亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Geo-Intelligent Retrieval Framework Based on Machine Learning in the Cloud Environment: A Case Study of Soil Moisture Retrieval

计算机科学 遥感 数据检索 含水量 云计算 比例(比率) 机器学习 环境科学 数据库 地质学 量子力学 操作系统 物理 岩土工程
作者
Zhenghao Li,Qiangqiang Yuan,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3280591
摘要

Soil moisture is one of the important parameters in Earth system models. In recent years, the retrieval based on machine learning and data fusion of multi-source satellite observation data has become one of the effective methods to obtain soil moisture information at a large scale. However, most retrieval studies need to download remote sensing original data first, then preprocess, train the retrieval models, and finally generate products in the offline environment. In order to meet the requirements of long temporal series of large-scale area retrieval, and with the widespread use of machine learning in retrieval studies, the amount of remote sensing data and necessary computing resources are gradually increasing. Moreover, studies usually use a single machine learning retrieval model for the entire study area, which lacks the consideration of geographical differences and spatial heterogeneity of soil moisture. Therefore, we established a geo-intelligent soil moisture retrieval framework completely based on the cloud environment. In this study, a variety of machine learning algorithms were used to fuse multi-source observation data mainly including MODIS data and other auxiliary data, and the Continental United States (CONUS) was taken as the experimental area to generate soil moisture data with a resolution of 500m. In addition, this study combines geographical correlation with machine learning models to cope with the spatial heterogeneity of surface soil moisture. Overall, on the basis of site-based validation, the retrieval model trained under the framework performed well, with estimation accuracy of 0.716 and 0.0383 m 3 ·m -3 in terms of coefficient of determination (R 2 ) and unbiased root mean square error (ubRMSE). The establishment of the cloud retrieval framework provides convenience for the whole retrieval process and also provides a new idea for other retrieval studies of geoscience parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
赘婿应助yeon采纳,获得10
22秒前
23秒前
小九九完成签到 ,获得积分10
27秒前
34秒前
科研小白完成签到,获得积分10
37秒前
testmanfuxk完成签到,获得积分10
39秒前
凹凸先森发布了新的文献求助10
39秒前
39秒前
阿巴完成签到,获得积分10
47秒前
自信号厂完成签到 ,获得积分10
49秒前
小奋青完成签到 ,获得积分10
49秒前
传奇3应助yeon采纳,获得10
50秒前
51秒前
Stardust完成签到 ,获得积分10
53秒前
58秒前
Ava应助阿巴采纳,获得10
1分钟前
1分钟前
传奇3应助yeon采纳,获得10
1分钟前
Elon完成签到,获得积分10
1分钟前
我是老大应助却之不恭6253采纳,获得10
1分钟前
1分钟前
El发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助El采纳,获得10
1分钟前
1分钟前
汉堡包应助Magali采纳,获得10
1分钟前
微笑驳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
凹凸先森发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
要读睡着了完成签到,获得积分10
2分钟前
NOTHING完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124283
求助须知:如何正确求助?哪些是违规求助? 3662182
关于积分的说明 11590291
捐赠科研通 3362579
什么是DOI,文献DOI怎么找? 1847653
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838