Prediction of CMP Material Removal Rate based on Pad Surface Roughness Using Deep Neural Network

表面粗糙度 抛光 人工神经网络 超参数 表面光洁度 材料科学 薄脆饼 化学机械平面化 计算机科学 人工智能 机器学习 复合材料 纳米技术
作者
Jong Min Jeong,Seon Ho Jeong,Yeong Il Shin,Young‐Wook Park,Jongmin Jeong
出处
期刊:Journal of the Korean Society for Precision Engineering [Korean Society of Precision Engineering]
卷期号:40 (1): 21-29 被引量:3
标识
DOI:10.7736/jkspe.022.119
摘要

As the digitization of the manufacturing process is accelerating, various data-driven approaches using machine learning are being developed in chemical mechanical polishing (CMP). For a more accurate prediction in contact-based CMP, it is necessary to consider the real-time changing pad surface roughness during polishing. Changes in pad surface roughness result in non-uniformity of the real contact pressure and friction applied to the wafer, which are the main causes of material removal rate variation. In this paper, we predicted the material removal rate based on pressure and surface roughness using a deep neural network (DNN). Reduced peak height (Rpk) and real contact area (RCA) were chosen as the key parameters indicative of the surface roughness of the pad, and 220 data were collected along with the process pressure. The collected data were normalized and separated in a 3 : 1 : 1 ratio to improve the predictive performance of the DNN model. The hyperparameters of the DNN model were optimized through random search techniques and 5 cross-validations. The optimized DNN model predicted the material removal rate with high accuracy in ex-situ CMP. This study is expected to be utilized in data-driven machine learning decision making for cyber-physical CMP systems in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助yan艳采纳,获得10
1秒前
桐桐应助未央采纳,获得10
2秒前
帝国之花完成签到,获得积分10
2秒前
FashionBoy应助朱大帅采纳,获得10
2秒前
蓝雁发布了新的文献求助10
2秒前
无心的热狗完成签到,获得积分10
3秒前
yilin发布了新的文献求助10
3秒前
稳重向南发布了新的文献求助10
3秒前
稳重向南发布了新的文献求助10
3秒前
稳重向南发布了新的文献求助10
3秒前
傻傻的尔蓝完成签到,获得积分10
3秒前
3361702776发布了新的文献求助10
4秒前
5秒前
今后应助学霸土豆采纳,获得10
5秒前
归尘发布了新的文献求助10
5秒前
Yuling发布了新的文献求助10
6秒前
6秒前
7秒前
李爱国应助iuhgnor采纳,获得10
7秒前
香蕉觅云应助杰卿采纳,获得10
7秒前
9秒前
9秒前
加油应助3361702776采纳,获得10
9秒前
10秒前
Gbn发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
轨迹应助iuhgnor采纳,获得20
11秒前
11秒前
12秒前
冀城霖完成签到 ,获得积分10
12秒前
森淼发布了新的文献求助10
13秒前
13秒前
13秒前
Evelyn发布了新的文献求助10
13秒前
13秒前
lxh发布了新的文献求助10
14秒前
吴宇完成签到,获得积分10
14秒前
14秒前
李健的小迷弟应助可心儿采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281