代谢组
代谢组学
小桶
结直肠癌
微生物群
生物
基因组
肠道菌群
内科学
医学
癌症
生物信息学
转录组
遗传学
基因
生物化学
基因表达
作者
Cheng Kong,Lei Liang,Guang Liu,Lutao Du,Yongzhi Yang,Jianqiang Liu,Debing Shi,Dakui Luo,Yanlei Ma
标识
DOI:10.1136/gutjnl-2022-327156
摘要
Objective The incidence of early-onset colorectal cancer (EO-CRC) is steadily increasing. Here, we aimed to characterise the interactions between gut microbiome, metabolites and microbial enzymes in EO-CRC patients and evaluate their potential as non-invasive biomarkers for EO-CRC. Design We performed metagenomic and metabolomic analyses, identified multiomics markers and constructed CRC classifiers for the discovery cohort with 130 late-onset CRC (LO-CRC), 114 EO-CRC subjects and age-matched healthy controls (97 LO-Control and 100 EO-Control). An independent cohort of 38 LO-CRC, 24 EO-CRC, 22 LO-Controls and 24 EO-Controls was analysed to validate the results. Results Compared with controls, reduced alpha-diversity was apparent in both, LO-CRC and EO-CRC subjects. Although common variations existed, integrative analyses identified distinct microbiome–metabolome associations in LO-CRC and EO-CRC. Fusobacterium nucleatum enrichment and short-chain fatty acid depletion, including reduced microbial GABA biosynthesis and a shift in acetate/acetaldehyde metabolism towards acetyl-CoA production characterises LO-CRC. In comparison, multiomics signatures of EO-CRC tended to be associated with enriched Flavonifractor plauti and increased tryptophan, bile acid and choline metabolism. Notably, elevated red meat intake-related species, choline metabolites and KEGG orthology (KO) pldB and cbh gene axis may be potential tumour stimulators in EO-CRC. The predictive model based on metagenomic, metabolomic and KO gene markers achieved a powerful classification performance for distinguishing EO-CRC from controls. Conclusion Our large-sample multiomics data suggest that altered microbiome–metabolome interplay helps explain the pathogenesis of EO-CRC and LO-CRC. The potential of microbiome-derived biomarkers as promising non-invasive tools could be used for the accurate detection and distinction of individuals with EO-CRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI