Past, Present, and Future of Machine Learning and Artificial Intelligence for Breast Cancer Screening

可解释性 人工智能 概化理论 计算机科学 机器学习 乳腺癌筛查 深度学习 人工智能应用 乳腺癌 模式 任务(项目管理) 乳腺摄影术 癌症 医学 心理学 工程类 发展心理学 社会科学 系统工程 社会学 内科学
作者
Natalie Baughan,Lindsay Douglas,Maryellen L. Giger
出处
期刊:Journal of breast imaging [Oxford University Press]
卷期号:4 (5): 451-459 被引量:11
标识
DOI:10.1093/jbi/wbac052
摘要

Abstract Breast cancer screening has evolved substantially over the past few decades because of advancements in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review provides a brief overview of the history, current state, and future of AI in breast cancer screening and diagnosis along with challenges involved in the development of AI systems. Although AI has been developing for interpretation tasks associated with breast cancer screening for decades, its potential to combat the subjective nature and improve the efficiency of human image interpretation is always expanding. The rapid advancement of computational power and deep learning has increased greatly in AI research, with promising performance in detection and classification tasks across imaging modalities. Most AI systems, based on human-engineered or deep learning methods, serve as concurrent or secondary readers, that is, as aids to radiologists for a specific, well-defined task. In the future, AI may be able to perform multiple integrated tasks, making decisions at the level of or surpassing the ability of humans. Artificial intelligence may also serve as a partial primary reader to streamline ancillary tasks, triaging cases or ruling out obvious normal cases. However, before AI is used as an independent, autonomous reader, various challenges need to be addressed, including explainability and interpretability, in addition to repeatability and generalizability, to ensure that AI will provide a significant clinical benefit to breast cancer screening across all populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助booshu采纳,获得10
1秒前
goldenfleece完成签到,获得积分10
2秒前
ZGH完成签到,获得积分10
3秒前
3秒前
zdy关闭了zdy文献求助
4秒前
科研通AI5应助三只保全采纳,获得10
4秒前
9羊完成签到,获得积分10
5秒前
TWT完成签到,获得积分10
5秒前
6秒前
6秒前
开朗娩完成签到,获得积分10
6秒前
求求各位大哥救救小弟我吧完成签到,获得积分10
6秒前
7秒前
领导范儿应助彩色的奄采纳,获得10
7秒前
咕噜完成签到,获得积分10
7秒前
Lucas应助失眠友灵采纳,获得10
7秒前
万能图书馆应助ZY采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
orixero应助科研小黑采纳,获得10
10秒前
10秒前
机灵念蕾发布了新的文献求助20
11秒前
雾失楼台完成签到,获得积分10
11秒前
英俊的铭应助yangdan采纳,获得30
11秒前
12秒前
子云发布了新的文献求助10
12秒前
Lucas应助ZZ采纳,获得10
12秒前
12秒前
Cmdbjzw发布了新的文献求助10
13秒前
4qfguj发布了新的文献求助10
13秒前
13秒前
研友_pLwmvZ发布了新的文献求助10
13秒前
找文献呢完成签到,获得积分10
13秒前
14秒前
善学以致用应助土豪的康采纳,获得10
14秒前
陈佩chenpei发布了新的文献求助10
14秒前
搜集达人应助机智靖柏采纳,获得10
14秒前
骤雨时晴完成签到 ,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808560
求助须知:如何正确求助?哪些是违规求助? 3353267
关于积分的说明 10364381
捐赠科研通 3069461
什么是DOI,文献DOI怎么找? 1685550
邀请新用户注册赠送积分活动 810616
科研通“疑难数据库(出版商)”最低求助积分说明 766214