TransDose: Transformer-based radiotherapy dose prediction from CT images guided by super-pixel-level GCN classification

计算机科学 人工智能 分割 概化理论 像素 放射治疗计划 深度学习 模式识别(心理学) 放射治疗 医学 数学 放射科 统计
作者
Zhengyang Jiao,Xingchen Peng,Yan Wang,Jianghong Xiao,Dong Nie,Xi Wu,Xin Wang,Jiliu Zhou,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102902-102902 被引量:23
标识
DOI:10.1016/j.media.2023.102902
摘要

Radiotherapy is a mainstay treatment for cancer in clinic. An excellent radiotherapy treatment plan is always based on a high-quality dose distribution map which is produced by repeated manual trial-and-errors of experienced experts. To accelerate the radiotherapy planning process, many automatic dose distribution prediction methods have been proposed recently and achieved considerable fruits. Nevertheless, these methods require certain auxiliary inputs besides CT images, such as segmentation masks of the tumor and organs at risk (OARs), which limits their prediction efficiency and application potential. To address this issue, we design a novel approach named as TransDose for dose distribution prediction that treats CT images as the unique input in this paper. Specifically, instead of inputting the segmentation masks to provide the prior anatomical information, we utilize a super-pixel-based graph convolutional network (GCN) to extract category-specific features, thereby compensating the network for the necessary anatomical knowledge. Besides, considering the strong continuous dependency between adjacent CT slices as well as adjacent dose maps, we embed the Transformer into the backbone, and make use of its superior ability of long-range sequence modeling to endow input features with inter-slice continuity message. To our knowledge, this is the first network that specially designed for the task of dose prediction from only CT images without ignoring necessary anatomical structure. Finally, we evaluate our model on two real datasets, and extensive experiments demonstrate the generalizability and advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕小丙完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
热情醉冬完成签到,获得积分10
2秒前
zyy6657完成签到,获得积分10
3秒前
会魔法的老人完成签到,获得积分10
3秒前
鱼秋完成签到,获得积分10
3秒前
秦月未完完成签到,获得积分10
3秒前
3秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
冰魂应助LZL1026采纳,获得10
8秒前
GongSyi完成签到 ,获得积分10
9秒前
所所应助猪猪hero采纳,获得10
14秒前
15秒前
15秒前
悦耳以亦完成签到 ,获得积分10
18秒前
18秒前
叶瑟曦发布了新的文献求助10
20秒前
20秒前
七个小矮人发布了新的文献求助100
22秒前
DAOXIAN完成签到 ,获得积分10
23秒前
zhangj发布了新的文献求助20
24秒前
所所应助猪猪hero采纳,获得10
25秒前
27秒前
得得得123完成签到,获得积分10
28秒前
28秒前
孟浩然完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
33秒前
猪猪hero发布了新的文献求助10
33秒前
茉莉花茶完成签到 ,获得积分10
35秒前
36秒前
37秒前
情怀应助LZL1026采纳,获得10
37秒前
栗栗完成签到 ,获得积分20
38秒前
PAD完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866133
求助须知:如何正确求助?哪些是违规求助? 3408720
关于积分的说明 10659586
捐赠科研通 3132910
什么是DOI,文献DOI怎么找? 1727844
邀请新用户注册赠送积分活动 832501
科研通“疑难数据库(出版商)”最低求助积分说明 780298