亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism

平均绝对百分比误差 均方误差 水准点(测量) 计算机科学 期限(时间) 功率(物理) 人工智能 钥匙(锁) 皮尔逊积矩相关系数 能量(信号处理) 人工神经网络 数据挖掘 统计 数学 物理 计算机安全 大地测量学 量子力学 地理
作者
Anping Wan,Qing Chang,Khalil AL-Bukhaiti,Jiabo He
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128274-128274 被引量:202
标识
DOI:10.1016/j.energy.2023.128274
摘要

This study proposes a new approach for short-term power load forecasting using a combination of convolutional neural networks (CNN), long short-term memory (LSTM), and attention mechanisms to address the issue of information loss due to excessively long input time series data. The objective is to enhance the accuracy of short-term power load prediction, which is crucial for efficient energy management. The study analyzes the relationship between the target load and the collected parameters, identifying the most influential factors using Pearson correlation coefficient analysis. A one-dimensional CNN layer is utilized to extract high-dimensional features from the input data, followed by an LSTM layer that captures temporal correlations within the historical sequences. Finally, an attention mechanism is introduced to optimize the weight of the LSTM output, enhance the influence of key information, and optimize the overall prediction model. The performance of the proposed model is evaluated using two benchmark models based on mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) metrics. The results show that the CNN-LSTM-A model outperforms the traditional LSTM model regarding power load prediction accuracy for two thermal power units, with an improvement of 7.3% and 5.7%, respectively, indicating superior performance. Therefore, this study demonstrates the effectiveness of the proposed CNN-LSTM-A model for short-term power load forecasting, which has potential applications in the energy industry. In conclusion, the proposed approach can improve the accuracy of power load forecasting, leading to more efficient energy management and cost savings. Additionally, the study highlights the importance of incorporating attention mechanisms into traditional LSTM models for power load forecasting, as it helps to optimize the weight of the LSTM output and improve the accuracy of the predictions. The proposed CNN-LSTM-A model can be potentially useful for energy companies and policymakers in making informed decisions regarding energy production and consumption. Overall, this study provides a valuable contribution to power load forecasting, and the proposed approach could be extended to other areas of time-series forecasting in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
qiuqiu发布了新的文献求助10
33秒前
jun应助bai采纳,获得10
42秒前
49秒前
maggiexjl完成签到,获得积分10
1分钟前
Mengzhen Du发布了新的文献求助10
1分钟前
冬去春来完成签到 ,获得积分10
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
皮皮虾完成签到,获得积分10
2分钟前
Re完成签到 ,获得积分10
4分钟前
醉熏的灵安完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
kuoping完成签到,获得积分0
5分钟前
Axel完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
arizaki7发布了新的文献求助10
8分钟前
8分钟前
二二发布了新的文献求助10
8分钟前
情怀应助冷酷的又亦采纳,获得10
8分钟前
耍酷的觅荷完成签到 ,获得积分10
8分钟前
赘婿应助二二采纳,获得10
9分钟前
yunxiao完成签到 ,获得积分10
9分钟前
结实的泽洋完成签到,获得积分10
9分钟前
邬化蛹发布了新的文献求助10
10分钟前
甜甜纸飞机完成签到 ,获得积分10
10分钟前
甜甜的紫菜完成签到 ,获得积分10
10分钟前
沉淀完成签到 ,获得积分10
10分钟前
彩虹儿应助Hayat采纳,获得50
10分钟前
11分钟前
11分钟前
11分钟前
Archers完成签到 ,获得积分10
11分钟前
小蘑菇应助科研通管家采纳,获得20
12分钟前
12分钟前
12分钟前
13分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4172913
求助须知:如何正确求助?哪些是违规求助? 3708433
关于积分的说明 11698005
捐赠科研通 3392883
什么是DOI,文献DOI怎么找? 1861339
邀请新用户注册赠送积分活动 920691
科研通“疑难数据库(出版商)”最低求助积分说明 832833