STAR-RL: Spatial-temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution

人工智能 图像分辨率 强化学习 计算机科学 计算机视觉 明星(博弈论) 模式识别(心理学) 图像(数学) 分辨率(逻辑) 物理 天体物理学
作者
Wenting Chen,Jie Liu,Tommy W. S. Chow,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3419809
摘要

Pathology image are essential for accurately interpreting lesion cells in cytopathology screening, but acquiring high-resolution digital slides requires specialized equipment and long scanning times. Though super-resolution (SR) techniques can alleviate this problem, existing deep learning models recover pathology image in a black-box manner, which can lead to untruthful biological details and misdiagnosis. Additionally, current methods allocate the same computational resources to recover each pixel of pathology image, leading to the sub-optimal recovery issue due to the large variation of pathology image. In this paper, we propose the first hierarchical reinforcement learning framework named Spatial-Temporal hierARchical Reinforcement Learning (STAR-RL), mainly for addressing the aforementioned issues in pathology image super-resolution problem. We reformulate the SR problem as a Markov decision process of interpretable operations and adopt the hierarchical recovery mechanism in patch level, to avoid sub-optimal recovery. Specifically, the higher-level spatial manager is proposed to pick out the most corrupted patch for the lower-level patch worker. Moreover, the higher-level temporal manager is advanced to evaluate the selected patch and determine whether the optimization should be stopped earlier, thereby avoiding the over-processed problem. Under the guidance of spatial-temporal managers, the lower-level patch worker processes the selected patch with pixel-wise interpretable actions at each time step. Experimental results on medical images degraded by different kernels show the effectiveness of STAR-RL. Furthermore, STAR-RL validates the promotion in tumor diagnosis with a large margin and shows generalizability under various degradation. The source code is to be released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhao完成签到 ,获得积分10
1秒前
3秒前
Pipper完成签到,获得积分10
4秒前
4秒前
jason发布了新的文献求助10
5秒前
伊莎贝儿发布了新的文献求助10
5秒前
5秒前
iW完成签到 ,获得积分10
5秒前
laola完成签到,获得积分10
5秒前
阳光的友易完成签到 ,获得积分10
6秒前
隐形荟完成签到 ,获得积分10
6秒前
干焱完成签到,获得积分10
6秒前
能干的邹完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助mao采纳,获得10
7秒前
7秒前
章慕思完成签到 ,获得积分10
7秒前
隐形之玉完成签到,获得积分10
7秒前
募股小完成签到,获得积分10
7秒前
迷路初兰发布了新的文献求助10
8秒前
肖燕完成签到 ,获得积分10
8秒前
8秒前
坚果儿完成签到,获得积分20
9秒前
何佳完成签到,获得积分10
9秒前
10秒前
宁羽发布了新的文献求助10
10秒前
11秒前
tiankong完成签到,获得积分10
11秒前
Nia发布了新的文献求助30
12秒前
日立天上完成签到,获得积分10
12秒前
花样年华完成签到,获得积分0
13秒前
猪猪女孩发布了新的文献求助10
13秒前
直率的彤发布了新的文献求助10
14秒前
15秒前
踏实万天完成签到,获得积分10
15秒前
mao完成签到,获得积分10
16秒前
怡然白竹发布了新的文献求助10
17秒前
桐桐应助宁羽采纳,获得10
17秒前
xiao发布了新的文献求助10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868