Assessing learners’ English public speaking anxiety with multimodal deep learning technologies

焦虑 计算机科学 语言学 心理学 数学教育 人工智能 自然语言处理 多媒体 精神科 哲学
作者
Chunping Zheng,Tingting Zhang,Xu Chen,Huayang Zhang,Jiangbo Wan,Bin Wu
出处
期刊:Computer Assisted Language Learning [Routledge]
卷期号:: 1-29 被引量:6
标识
DOI:10.1080/09588221.2024.2351129
摘要

Public speaking anxiety (PSA) is a common phenomenon for language learners involving both psychological and physiological symptoms. Timely and effective PSA assessment can help diagnose learners' speaking anxiety, offer learners feedback to alleviate their anxiety, and improve their public speaking competence. However, it is still a challenging issue to achieve accurate automated assessment of learners' PSA due to the lack of large-scale and open-source multimodal datasets based on real classroom settings. This study collected the public speaking videos of English as a foreign language (EFL) learners in public speaking courses, and constructed a large-scale multimodal dataset named Speaking Anxiety in Real Classrooms (SARC) with three modalities of acoustic, visual, and textual data (including 1,158 manually-annotated speech videos and corresponding speech drafts of 382 participants). A multimodal deep learning model for automated assessment of learners' speaking anxiety was proposed, and an online formative assessment platform was then developed to realize the automated assessment of PSA for classroom teaching. A pilot survey study involving 78 participants was then conducted to investigate learners' acceptance of the platform. Experimental results verified the validity of the deep learning model and the consistency between automated assessment and teacher assessment. Learners' acceptance data further indicated that collaboration between automated and human assessment provided them with the most satisfactory experience of using the platform to improve their English public speaking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艾伶发布了新的文献求助10
1秒前
水知寒完成签到,获得积分10
1秒前
浮游应助背后丹妗采纳,获得10
2秒前
2秒前
3秒前
赵芳发布了新的文献求助10
4秒前
郑蒸日上完成签到,获得积分10
4秒前
小张发布了新的文献求助10
5秒前
田様应助欢呼的醉香采纳,获得10
5秒前
呆萌蜻蜓发布了新的文献求助10
6秒前
6秒前
6秒前
赘婿应助顺利的梦柏采纳,获得10
7秒前
满丘山完成签到,获得积分10
8秒前
zhy完成签到,获得积分10
8秒前
西瓜刀完成签到 ,获得积分10
9秒前
小何完成签到,获得积分10
9秒前
9秒前
北沐城歌应助李宗彬采纳,获得10
10秒前
10秒前
10秒前
11秒前
阿清发布了新的文献求助30
11秒前
兵马俑完成签到,获得积分10
11秒前
12秒前
12秒前
善学以致用应助runtang采纳,获得10
12秒前
研研研完成签到,获得积分10
15秒前
董海涛发布了新的文献求助10
15秒前
15秒前
廖丹妮发布了新的文献求助10
15秒前
kittyoyo发布了新的文献求助10
15秒前
wxf完成签到,获得积分10
16秒前
欧皇发布了新的文献求助10
16秒前
所所应助帅气的樱桃采纳,获得10
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助30
20秒前
旎旎完成签到,获得积分10
20秒前
董海涛完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578136
求助须知:如何正确求助?哪些是违规求助? 3997137
关于积分的说明 12374615
捐赠科研通 3671240
什么是DOI,文献DOI怎么找? 2023324
邀请新用户注册赠送积分活动 1057276
科研通“疑难数据库(出版商)”最低求助积分说明 944207