A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation

可靠性(半导体) 计算机科学 计算机视觉 分割 人工智能 图像(数学) 图像分割 功率(物理) 物理 量子力学
作者
Xiaoqing Liu,Kenji Ono,Ryoma Bise
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:147: 105056-105056 被引量:2
标识
DOI:10.1016/j.imavis.2024.105056
摘要

Medical image segmentation is an important task in medical imaging and diagnosis. Data augmentation can substantially improve the accuracy of medical image segmentation when the dataset has a small amount of medical images. However, the data augmentation methods for medical image are usually based on big models that require extensive search space. Furthermore, excessively complex models often have a heavy burden for the general healthcare organization or researcher. To address this problem, we propose a method of data augmentation that is simple to implement even for the general researcher and simple to transplant across various models. Here we introduce our new methods called KeepMask and KeepMix, which can be simply ported to a variety of models and provide high performance. These methods allow data augmentation without any effect on the target organ or lesion and can also be adapted to multi-class segmentation. KeepMask and KeepMix can not only perturb the background of an existing medical image but also add target organs that are not present to it and generate new images based on the image. In this paper, we performed our methods on both binary class datasets and multi-class datasets and obtained better performance. We conducted numerous experiments showing the predicted segmentation images using our proposed methods obtained more accurate boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中华有为完成签到,获得积分10
1秒前
炙热的觅荷完成签到,获得积分10
1秒前
1秒前
1秒前
鲜艳的访风完成签到,获得积分10
2秒前
StonesKing完成签到,获得积分20
2秒前
苏silence发布了新的文献求助10
2秒前
孤岛完成签到,获得积分10
3秒前
gyusbjshaxb完成签到,获得积分10
3秒前
CipherSage应助平常亦凝采纳,获得10
3秒前
3秒前
嘿小黑发布了新的文献求助10
3秒前
打打应助雪白飞丹采纳,获得10
4秒前
酷波er应助maz123456采纳,获得10
4秒前
4秒前
质延完成签到 ,获得积分10
4秒前
曾经的曼巴完成签到,获得积分10
5秒前
顺心凡灵完成签到,获得积分10
5秒前
脑洞疼应助灵巧冰绿采纳,获得10
5秒前
5秒前
5秒前
5秒前
zhuzhu完成签到,获得积分10
5秒前
长矛沾屎戳谁谁死完成签到,获得积分10
5秒前
乐观完成签到,获得积分10
6秒前
李爱国应助薛定谔的猫采纳,获得10
6秒前
7秒前
liang发布了新的文献求助30
7秒前
qpzn完成签到,获得积分10
7秒前
wanci应助大秦帝国采纳,获得10
8秒前
大大怪发布了新的文献求助10
8秒前
善良的冷梅完成签到,获得积分10
8秒前
fancy发布了新的文献求助10
9秒前
9秒前
Akim应助我又可以了采纳,获得10
10秒前
you发布了新的文献求助10
10秒前
淡定从凝完成签到,获得积分10
10秒前
於成协完成签到,获得积分10
12秒前
笑容发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582