材料科学
气凝胶
降级(电信)
异质结
吸附
碳化
光催化
光电子学
化学工程
核化学
纳米技术
催化作用
有机化学
化学
电信
工程类
计算机科学
作者
Wanqi Zhang,Hui Liu,Zhangjing Chen,Zhenchao Yang,Xiaotao Zhang,Ximing Wang
标识
DOI:10.1021/acsami.4c00929
摘要
Pollutant treatment, hazardous solid waste conversion, and biomass resource utilization are significant topics in environmental pollution control, and simultaneously achieving them is challenging. Herein, we developed a "from waste absorbent to effective photocatalyst" upcycle strategy for nontoxic conversion of Cd(II) adsorbed on thiolation@wood-aerogel (TWA) into CdS/g-C3N4 heterojunctions through the in situ chemical deposition high-temperature carbonization combined conversion method to overcome the above problems simultaneously. We used Schiff base reaction to graft l-cysteine into dialdehyde@wood-aerogel to prepare TWA with a high Cd(II) adsorption capacity (600 mg/L, 294.66 mg/g). Subsequently, the spent Cd(II)-loaded-TWA was used as a substrate for in situ construction of Cd(II) into CdS/g-C3N4 heterojunction for activating peroxymonosulfate (PMS) under simulated sunlight [simulated solar light (SSL)], achieving efficient tetracycline (TC) degradation (20 mg/L, 95.32%). The Langmuir and pseudo-second-order models indicate single-layer chemical adsorption of Cd(II) on the TWA adsorption process. In the PMS/SSL system, CdS/g-C3N4@TWA efficiently and rapidly degraded TC via an adsorption-photocatalytic synergistic degradation mechanism. The used CdS/g-C3N4@TWA has a good biocompatibility. This study proposed design and preparation of a new type of wood aerogel absorbent and provided a novel upcycling strategy for innovative use of the spent waste adsorbent.
科研通智能强力驱动
Strongly Powered by AbleSci AI