Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis

荟萃分析 医学 内科学 二元分析 创伤性脑损伤 机器学习 计算机科学 精神科
作者
Jue Wang,Ming Yin,Han Chun Wen
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:23 (1) 被引量:10
标识
DOI:10.1186/s12911-023-02247-8
摘要

Abstract Purpose With the in-depth application of machine learning(ML) in clinical practice, it has been used to predict the mortality risk in patients with traumatic brain injuries(TBI). However, there are disputes over its predictive accuracy. Therefore, we implemented this systematic review and meta-analysis, to explore the predictive value of ML for TBI. Methodology We systematically retrieved literature published in PubMed, Embase.com, Cochrane, and Web of Science as of November 27, 2022. The prediction model risk of bias(ROB) assessment tool (PROBAST) was used to assess the ROB of models and the applicability of reviewed questions. The random-effects model was adopted for the meta-analysis of the C-index and accuracy of ML models, and a bivariate mixed-effects model for the meta-analysis of the sensitivity and specificity. Result A total of 47 papers were eligible, including 156 model, with 122 newly developed ML models and 34 clinically recommended mature tools. There were 98 ML models predicting the in-hospital mortality in patients with TBI; the pooled C-index, sensitivity, and specificity were 0.86 (95% CI: 0.84, 0.87), 0.79 (95% CI: 0.75, 0.82), and 0.89 (95% CI: 0.86, 0.92), respectively. There were 24 ML models predicting the out-of-hospital mortality; the pooled C-index, sensitivity, and specificity were 0.83 (95% CI: 0.81, 0.85), 0.74 (95% CI: 0.67, 0.81), and 0.75 (95% CI: 0.66, 0.82), respectively. According to multivariate analysis, GCS score, age, CT classification, pupil size/light reflex, glucose, and systolic blood pressure (SBP) exerted the greatest impact on the model performance. Conclusion According to the systematic review and meta-analysis, ML models are relatively accurate in predicting the mortality of TBI. A single model often outperforms traditional scoring tools, but the pooled accuracy of models is close to that of traditional scoring tools. The key factors related to model performance include the accepted clinical variables of TBI and the use of CT imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨旱莲完成签到,获得积分10
刚刚
5秒前
大个应助科研混子采纳,获得10
5秒前
肉丸完成签到 ,获得积分10
5秒前
wendinfgmei发布了新的文献求助10
6秒前
凸迩丝儿发布了新的文献求助10
6秒前
6秒前
ElephBali完成签到,获得积分10
7秒前
8秒前
orixero应助畅快的鱼采纳,获得10
9秒前
9秒前
ElephBali发布了新的文献求助10
10秒前
13秒前
凸迩丝儿完成签到,获得积分10
14秒前
τ涛发布了新的文献求助10
15秒前
科研混子发布了新的文献求助10
17秒前
xxxxxxlp完成签到,获得积分10
28秒前
31秒前
贪玩岱周完成签到,获得积分20
32秒前
prim发布了新的文献求助10
33秒前
英姑应助xxxxxxlp采纳,获得10
35秒前
科研助手6应助山水之乐采纳,获得10
41秒前
43秒前
48秒前
48秒前
LLL发布了新的文献求助10
49秒前
英俊的铭应助小熊饼干采纳,获得10
49秒前
南木完成签到,获得积分10
52秒前
周钰波发布了新的文献求助10
54秒前
叠森完成签到,获得积分10
1分钟前
corazon完成签到,获得积分10
1分钟前
qzh发布了新的文献求助10
1分钟前
cdercder应助幸福采纳,获得10
1分钟前
okk完成签到 ,获得积分10
1分钟前
吴文章完成签到 ,获得积分10
1分钟前
chill完成签到,获得积分10
1分钟前
fafa完成签到 ,获得积分10
1分钟前
1分钟前
子华完成签到 ,获得积分10
1分钟前
Johnny完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776440
求助须知:如何正确求助?哪些是违规求助? 3321862
关于积分的说明 10208102
捐赠科研通 3037186
什么是DOI,文献DOI怎么找? 1666565
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872