IMU-based ground reaction force estimation using OpenSim Moco

运动学 惯性测量装置 地面反作用力 运动捕捉 计算机科学 步态 工作流程 模拟 部队平台 人工智能 运动(物理) 物理医学与康复 医学 物理 经典力学 数据库
作者
Luana Bottini,Giacomo Di Raimondo,Bryce A. Killen,Z. Sawacha,Ilse Jonkers
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:106: S48-S48
标识
DOI:10.1016/j.gaitpost.2023.07.061
摘要

Musculoskeletal modeling (MSKm) and simulation provide an ideal framework for estimating movement-related parameters such as joint contact forces which cannot be measured in vivo. However, these parameters are not well-documented in free-living situations as inertial measurement units (IMUs) have rarely been combined with MSKm workflows. Although IMU-based systems are valuable alternatives to camera-based systems to estimate kinematics, no robust and validated method exists to estimate ground reaction forces (GRF) thereby alleviating the need for force plates. The aim of this study was to implement and validate a workflow for GRF estimation using a combined IMU and MSKm workflow. The ability to estimate such information, when combined with MSKm would provide clinicians access to movement-related relevant to the onset/progression of musculoskeletal diseases in an ecological environment. Can IMU-based kinematics combined with an MSKm-based simulation workflow be used to accurately estimate GRF during gait? Two healthy subjects (1 man, 1 female; age: 27.5±2.2 y) walked overground (self-selected speed). MotionCapture (100 Hz) and InertialCapture (60 Hz) systems were used to record 3D-marker trajectories and body segment orientations. GRF were recorded using force plates (1000 Hz). MoCap and InCap kinematics were calculated using OpenSim [1] and sensors-to-segment calibration OpenIMUs [2], respectively. Musculoskeletal model [3] containing 35 DOFs, 49 muscles, and 5 foot contact spheres was used in both approaches. OpenSim Moco was used to track the IMU-based kinematics with two main goals: (i) minimize the error between input kinematics and simulated motion, (ii) minimize the sum of the absolute value of the muscle activations. MocoSolver was applied to compute the optimized motion and muscle activations. GRF were evaluated based on the generated forces of the foot contact spheres. Centre of pressure (COP) was estimated using a Zero Moment Point (ZMP) method [4]. RMSE of the joint angle between MoCap and InCap was less 5° for all joint angles. RMSE between InCap kinematics and Moco simulated kinematics were 1-6° for all joint angles with knee and ankle flexion/extension max error of 10°. RMSE of anterior/posterior, vertical, and medio/lateral GRF was 0.10±0.02 BW, 0.25±0.01 BW and 0.06±0.03 BW respectively, compared to measured force plate data (Fig. 1). RMSE of anterior/posterior, and medio/lateral COP was 6.7±0.9 cm and 3.8±0.4 cm respectively, compared to measured force plate data.Download : Download high-res image (71KB)Download : Download full-size image The developed workflow for the estimation of GRF based on IMU-based kinematics and OpenSim Moco provided promising results. However, the contact sphere definition strongly affects the estimated GRF with a direct effect on the calculated COP and ultimately joint moments (not shown).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24豆发布了新的文献求助10
刚刚
倒霉兔子完成签到,获得积分0
刚刚
大吉发布了新的文献求助10
1秒前
1秒前
华仔应助杨海菡采纳,获得10
2秒前
管锦完成签到,获得积分20
2秒前
1122发布了新的文献求助30
3秒前
季定玮完成签到,获得积分20
3秒前
hjyylab应助年轻的藏今采纳,获得10
4秒前
一一完成签到,获得积分10
4秒前
Owen应助9527采纳,获得10
4秒前
幻想家姬别情完成签到,获得积分10
5秒前
6秒前
义气发卡完成签到 ,获得积分10
7秒前
yang发布了新的文献求助10
7秒前
柔弱的盼柳完成签到,获得积分10
7秒前
俏皮的安萱完成签到,获得积分10
7秒前
7秒前
7秒前
杨海菡完成签到,获得积分20
10秒前
RICK完成签到,获得积分10
10秒前
kitty完成签到,获得积分10
10秒前
Sunly发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
搞怪莫茗发布了新的文献求助10
11秒前
11秒前
帅气的丑完成签到,获得积分10
11秒前
xuanxuan完成签到 ,获得积分10
12秒前
hong发布了新的文献求助10
12秒前
科研小白完成签到,获得积分10
12秒前
明亮的翠风完成签到,获得积分10
14秒前
以戈完成签到,获得积分10
14秒前
cindy完成签到,获得积分10
14秒前
14秒前
15秒前
科研通AI2S应助帅气的丑采纳,获得10
15秒前
星星完成签到,获得积分10
15秒前
fixit完成签到,获得积分10
15秒前
15秒前
郝富完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966