亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrochemical degradation of ciprofloxacin from water: Modeling and prediction using ANN and LSSVM

环丙沙星 阳极 电解质 电化学 电流密度 化学 电极 抗生素 物理 生物化学 物理化学 量子力学
作者
Pezhman Abbasi,Ehsan Bahrami Moghadam
出处
期刊:Physics And Chemistry Of The Earth, Parts A/b/c [Elsevier BV]
卷期号:132: 103509-103509 被引量:4
标识
DOI:10.1016/j.pce.2023.103509
摘要

Ciprofloxacin is a widely used antibiotic that is also a persistent contamination that causes major health and environmental risks. This study investigated the electrochemical removal of ciprofloxacin using a boron-doped diamond anode and a non-supportive electrode to get an accurate understanding of the anode's performance. The effects of current density, initial ciprofloxacin concentration, time, pH, and electrolyte concentration on the removal efficiency of ciprofloxacin were investigated. Additionally, ANN and LSSVM models were used to predict ciprofloxacin removal. The results showed that the BDD anode was effective in removing ciprofloxacin from water, with complete removal of 10 mg L−1 CIP in less than 45 min with electrolyte concentration of 25 g L−1, a current density of 20 mA cm−2, and a pH value of 3. The removal efficiency was found to increase with increasing current density and time because it increases the concentration of active species. The removal efficiency was also found to be higher at acidic pH values and higher electrolyte concentrations. The ANN model was found to be more accurate in predicting ciprofloxacin removal than the LSSVM model, with an R2 of 0.9982 and an AARE% of 2.68%, compared to R2 of 0.9978 and an AARE% of 3.85%. The models were validated using a new set of data, and the results showed that the ANN model was able to accurately predict ciprofloxacin removal under a variety of conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
MM11111完成签到,获得积分10
36秒前
51秒前
1分钟前
2分钟前
2分钟前
SNOWSUMMER发布了新的文献求助10
2分钟前
SNOWSUMMER完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
lalalatiancai发布了新的文献求助10
5分钟前
5分钟前
5分钟前
bwx完成签到,获得积分10
6分钟前
6分钟前
6分钟前
猫沫沫829发布了新的文献求助10
6分钟前
6分钟前
FashionBoy应助猫沫沫829采纳,获得10
6分钟前
李燊发布了新的文献求助10
6分钟前
李健的小迷弟应助李燊采纳,获得10
6分钟前
猫沫沫829完成签到,获得积分10
6分钟前
6分钟前
ramsey33完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
帅气的如豹完成签到,获得积分10
7分钟前
9分钟前
pluto应助Liu采纳,获得20
9分钟前
Liu完成签到,获得积分10
9分钟前
jqliu完成签到 ,获得积分10
10分钟前
牛八先生完成签到,获得积分10
10分钟前
10分钟前
科研通AI5应助lalalatiancai采纳,获得10
10分钟前
10分钟前
lalalatiancai发布了新的文献求助10
10分钟前
10分钟前
10分钟前
lalalatiancai完成签到,获得积分10
10分钟前
11分钟前
12分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830475
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475428
捐赠科研通 3092608
什么是DOI,文献DOI怎么找? 1702183
邀请新用户注册赠送积分活动 818806
科研通“疑难数据库(出版商)”最低求助积分说明 771093