Validation of electrocardiographic artificial intelligence model for outcome prediction in patients with heart failure

医学 射血分数 内科学 心力衰竭 心脏病学 心肌梗塞 心房颤动 QRS波群 心电图 病因学
作者
Y Cho,Minjae Yoon,Jaeho Kim,J H Lee,Il‐Young Oh,Joong‐Jean Park,Cheol Jin Lee,Seok‐Min Kang,Dong‐Ju Choi
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.2929
摘要

Abstract Introduction Although several valuable biomarkers have been introduced for heart failure (HF) patients, their utilization in routine clinical practice is often constrained by cost and limited availability. Electrocardiogram (ECG) is an essential and cost-effective tool for evaluating cardiovascular diseases. We tested artificial intelligence (AI) algorithm analyzing a printed ECG image for the outcome prediction in patients with acute HF. Methods Two tertiary centers prospectively enrolled 1,254 patients with acute HF syndrome. Baseline ECG images were analyzed using a deep learning system called Quantitative ECG (QCG™), which features a CNN-based binary classifier trained to detect several urgent clinical conditions including shock, cardiac arrest, myocardial infarction, and HF, in addition to rhythm diagnosis. Results Patients with reduced left ventricular ejection fraction (LVEF, <40%) had significantly higher QCG scores for LV dysfunction (QCG-LVdys) (0.80 ± 0.20 vs. 0.38 ± 0.27, P < 0.001), and the AUC of QCG-LVdys for low LVEF was 0.884. Fifty-three patients (4.2%) resulted in in-hospital cardiac death (IHCD), and QCG score for critical events (QCG- Critical) was significantly higher in these patients than in survivors (0.57 ± 0.23 vs. 0.29 ± 0.20, P < 0.001). QCG-Critical was an independent predictor for IHCD after adjustment for age, sex, comorbidities, etiology/type of HF, atrial fibrillation, and QRS widening (adjusted OR = 1.68 [95% CI, 1.47 – 1.92], P <0.001, per 0.1). After further adjustments for echocardiographic LVEF and NTproBNP, QCG-Critical was still significantly correlated with IHCD (adjusted OR = 1.59 [95% CI, 1.36 – 1.87], P <0.001, per 0.1). The AUC of QCG-Critical for IHCD was 0.821 which was higher than the AUC of echocardiographic LVEF (P<0.001) or NTproBNP (P=0.07) (Fig 1A). The AUC of the multivariate model with QCG-Critical and other covariates was 0.866 (Fig 1B). During long-term follow-up, patients with higher QCG-Critical scores (>0.5) showed higher all-cause mortality rate compared to those with low QCG-Critical scores (<0.25) (adjusted HR = 2.69 [2.14 – 3.38], P < 0.001) (Fig 2). Conclusion Predicting outcomes in patients with acute HF appeared feasible using the newly developed Quantitative ECG (QCG) scores. These results suggest the possibility that QCG may serve as a novel biomarker for HF patients.ROC curves for In-hospital cardiac deathSurvival curves according to QCG scores

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
依依完成签到,获得积分10
13秒前
满城烟沙完成签到 ,获得积分0
15秒前
小小王完成签到 ,获得积分10
17秒前
rafa完成签到 ,获得积分10
19秒前
我就想看看文献完成签到 ,获得积分10
23秒前
是三石啊完成签到 ,获得积分10
23秒前
24秒前
莎莎完成签到 ,获得积分10
27秒前
手术刀完成签到 ,获得积分10
28秒前
Uniibooy完成签到 ,获得积分10
28秒前
北斗HH完成签到,获得积分10
30秒前
虚幻元风完成签到 ,获得积分10
31秒前
小强完成签到 ,获得积分0
36秒前
科研小白完成签到 ,获得积分10
37秒前
HCKACECE完成签到 ,获得积分10
43秒前
riceyellow完成签到,获得积分10
45秒前
wwww完成签到 ,获得积分10
47秒前
鹿冶完成签到 ,获得积分10
54秒前
南方周末完成签到,获得积分10
54秒前
0000完成签到 ,获得积分10
55秒前
丝丢皮得完成签到 ,获得积分10
1分钟前
鹿子完成签到 ,获得积分10
1分钟前
小梦完成签到,获得积分10
1分钟前
科研孙完成签到,获得积分10
1分钟前
背后海亦完成签到,获得积分10
1分钟前
吾系渣渣辉完成签到 ,获得积分10
1分钟前
1分钟前
星辰大海应助xuexin采纳,获得10
1分钟前
1分钟前
余味应助苗笑卉采纳,获得10
1分钟前
索谓完成签到 ,获得积分10
1分钟前
慕容博完成签到 ,获得积分10
1分钟前
我爱科研完成签到 ,获得积分10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
laber应助科研通管家采纳,获得30
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
陶世立完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994