Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies

材料科学 光电子学 抵抗 薄脆饼 泄漏(经济) 基质(水族馆) 制作 反应离子刻蚀 半导体 晶体管 蚀刻(微加工) 纳米技术 图层(电子) 电气工程 医学 海洋学 替代医学 工程类 病理 电压 地质学 经济 宏观经济学
作者
Sumit Choudhary,Midathala Yogesh,Daniel Schwarz,Hannes S. Funk,Subrata Ghosh,Satinder K. Sharma,Jörg Schulze,Kenneth E. Gonsalves
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:41 (5) 被引量:3
标识
DOI:10.1116/6.0002767
摘要

Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助科研通管家采纳,获得10
刚刚
球球了应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
经卿完成签到 ,获得积分10
1秒前
Thien应助科研通管家采纳,获得10
1秒前
Yanalee应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
苏晚发布了新的文献求助10
1秒前
Thien应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
打打应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
悠哈应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
Lee发布了新的文献求助10
2秒前
Yi发布了新的文献求助10
3秒前
在水一方应助sunyanghu369采纳,获得100
5秒前
niu发布了新的文献求助10
5秒前
Yi发布了新的文献求助10
6秒前
8秒前
科研通AI6应助阳光的萤采纳,获得10
11秒前
万能图书馆应助多乐多滋采纳,获得10
11秒前
王wangWANG完成签到,获得积分10
11秒前
13秒前
司宁完成签到,获得积分10
13秒前
纯真小笼包完成签到 ,获得积分10
14秒前
明熙完成签到,获得积分20
14秒前
王wangWANG发布了新的文献求助10
15秒前
16秒前
pipi发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403719
求助须知:如何正确求助?哪些是违规求助? 3890155
关于积分的说明 12107090
捐赠科研通 3534904
什么是DOI,文献DOI怎么找? 1939618
邀请新用户注册赠送积分活动 980477
科研通“疑难数据库(出版商)”最低求助积分说明 877307