READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis

回顾性分析 对偶(语法数字) 天然产物 代谢途径 计算生物学 计算机科学 生物 化学 生物化学 新陈代谢 艺术 全合成 文学类 有机化学
作者
Taein Kim,Seul Lee,Yejin Kwak,Min‐Soo Choi,Jeongbin Park,Sung Ju Hwang,Sang‐Gyu Kim
出处
期刊:New Phytologist [Wiley]
卷期号:243 (6): 2512-2527 被引量:12
标识
DOI:10.1111/nph.20012
摘要

Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website ( https://readretro.net ) and the open‐source code of READRetro have been made available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zd发布了新的文献求助10
刚刚
1秒前
5秒前
羔羊发布了新的文献求助10
5秒前
CipherSage应助机智寻雪采纳,获得10
6秒前
liman发布了新的文献求助10
6秒前
wbh关闭了wbh文献求助
8秒前
万能图书馆应助sinan采纳,获得10
8秒前
577完成签到,获得积分10
9秒前
英俊的铭应助动次打次采纳,获得10
9秒前
催化打工人完成签到,获得积分10
10秒前
打打应助zd采纳,获得10
11秒前
pj发布了新的文献求助10
11秒前
田様应助迷人的山柳采纳,获得10
12秒前
英俊的铭应助飞翔鸟采纳,获得10
12秒前
wang完成签到,获得积分10
14秒前
16秒前
雷霆康康完成签到,获得积分10
17秒前
背后归尘完成签到,获得积分10
17秒前
18秒前
liman完成签到,获得积分10
18秒前
马香芦完成签到,获得积分10
18秒前
Akim应助Dravia采纳,获得10
18秒前
maox1aoxin应助lv采纳,获得30
19秒前
慕青应助踏实小蘑菇采纳,获得10
19秒前
科研通AI2S应助lerrygg采纳,获得20
20秒前
行舟完成签到 ,获得积分10
22秒前
deer完成签到,获得积分10
23秒前
xtt完成签到,获得积分10
24秒前
25秒前
于是完成签到,获得积分10
25秒前
我是老大应助pj采纳,获得10
26秒前
29秒前
李健应助大气的画板采纳,获得10
29秒前
29秒前
受伤问凝完成签到 ,获得积分10
29秒前
LDB发布了新的文献求助10
30秒前
zhang狗子完成签到,获得积分10
31秒前
Lin应助球球采纳,获得10
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509723
关于积分的说明 11148644
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792128
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808