亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-based unsupervised contrastive learning for histopathological image classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 特征学习 深度学习 特征(语言学) 分割 机器学习 语言学 哲学
作者
Xiyue Wang,Sen Yang,Jun Zhang,Minghui Wang,Jing Zhang,Wei Yang,Junzhou Huang,Xiao Han
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:81: 102559-102559 被引量:273
标识
DOI:10.1016/j.media.2022.102559
摘要

A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anoldsheep发布了新的文献求助50
1秒前
搜集达人应助包靡靡采纳,获得10
6秒前
只道寻常完成签到,获得积分10
18秒前
西瓜皮发布了新的文献求助10
22秒前
24秒前
科研通AI5应助丁青采纳,获得10
27秒前
32秒前
37秒前
丁青发布了新的文献求助10
38秒前
juile发布了新的文献求助10
43秒前
科研通AI2S应助juile采纳,获得10
52秒前
科研通AI5应助juile采纳,获得10
52秒前
无花果应助俏皮的修杰采纳,获得20
56秒前
FashionBoy应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
juile完成签到,获得积分10
1分钟前
辛勤的小海豚完成签到,获得积分10
1分钟前
anoldsheep完成签到,获得积分10
1分钟前
caca完成签到,获得积分10
1分钟前
余十一完成签到 ,获得积分10
1分钟前
天天摸鱼完成签到,获得积分10
1分钟前
anoldsheep关注了科研通微信公众号
1分钟前
m1343513037完成签到,获得积分10
2分钟前
cwq完成签到,获得积分10
2分钟前
科研通AI5应助春江采纳,获得10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
JACK发布了新的文献求助10
2分钟前
消逝完成签到 ,获得积分10
2分钟前
JACK完成签到 ,获得积分10
3分钟前
春江发布了新的文献求助10
3分钟前
野性的小松鼠完成签到 ,获得积分10
3分钟前
3分钟前
机灵白桃发布了新的文献求助10
3分钟前
TXZ06发布了新的文献求助30
3分钟前
包靡靡发布了新的文献求助20
3分钟前
3分钟前
YangSihan发布了新的文献求助10
3分钟前
希望天下0贩的0应助yang采纳,获得30
3分钟前
科研通AI5应助机灵白桃采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244114
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800562
科研通“疑难数据库(出版商)”最低求助积分说明 759483