已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer-based unsupervised contrastive learning for histopathological image classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 特征学习 深度学习 特征(语言学) 分割 机器学习 语言学 哲学
作者
Xiyue Wang,Sen Yang,Jun Zhang,Minghui Wang,Jing Zhang,Wei Yang,Junzhou Huang,Xiao Han
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102559-102559 被引量:358
标识
DOI:10.1016/j.media.2022.102559
摘要

A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
2秒前
3秒前
无解应助cenghao采纳,获得100
3秒前
4秒前
陈慧钦完成签到,获得积分10
5秒前
哈哈哈完成签到,获得积分10
5秒前
明亮的代灵完成签到 ,获得积分0
6秒前
twinkle完成签到 ,获得积分10
7秒前
yun发布了新的文献求助10
7秒前
清脆的绿柳完成签到 ,获得积分10
10秒前
Jenny完成签到 ,获得积分10
10秒前
领导范儿应助哈哈哈采纳,获得10
10秒前
khh完成签到 ,获得积分10
10秒前
Criminology34应助sixone采纳,获得10
10秒前
Fionn完成签到,获得积分10
17秒前
sixone完成签到,获得积分20
19秒前
将颜完成签到 ,获得积分10
20秒前
23秒前
猎神发布了新的文献求助10
24秒前
lilili完成签到 ,获得积分10
28秒前
聪慧不二完成签到 ,获得积分10
28秒前
鹿笙发布了新的文献求助10
28秒前
czcmh完成签到 ,获得积分0
29秒前
sadascaqwqw发布了新的文献求助10
32秒前
41秒前
wanci应助猎神采纳,获得20
42秒前
Thi完成签到,获得积分10
44秒前
wanci应助鹿笙采纳,获得10
45秒前
qiqi完成签到 ,获得积分10
46秒前
和平发展完成签到,获得积分10
53秒前
55秒前
胡亚楠完成签到,获得积分10
56秒前
lhr完成签到 ,获得积分10
56秒前
56秒前
111222333完成签到,获得积分20
59秒前
哈哈哈发布了新的文献求助10
1分钟前
鹿笙完成签到,获得积分10
1分钟前
迪迪发布了新的文献求助30
1分钟前
1分钟前
123456发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581