Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction

无症状的 医学 内科学 心脏病学 智能手表 射血分数 窦性心律 前瞻性队列研究 置信区间 心力衰竭 心房颤动 计算机科学 嵌入式系统 可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (12): 2497-2503 被引量:88
标识
DOI:10.1038/s41591-022-02053-1
摘要

Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
踏雪飞鸿发布了新的文献求助10
1秒前
chenwei完成签到,获得积分10
6秒前
longh完成签到,获得积分10
6秒前
10秒前
几携完成签到 ,获得积分10
10秒前
小天发布了新的文献求助10
14秒前
刘星完成签到 ,获得积分10
15秒前
火星上的枕头完成签到 ,获得积分10
15秒前
缥缈盼旋完成签到,获得积分10
16秒前
搜集达人应助ruru采纳,获得30
16秒前
18秒前
shenzhou9完成签到,获得积分10
20秒前
复杂访冬完成签到 ,获得积分10
22秒前
sci大户发布了新的文献求助10
22秒前
xiaowuge完成签到 ,获得积分10
24秒前
甜美不评完成签到,获得积分10
25秒前
26秒前
TMUEH_FCL应助阁下宛歆采纳,获得10
28秒前
善良的白昼完成签到,获得积分10
29秒前
汉堡包应助HiNDT采纳,获得10
31秒前
31秒前
33秒前
33秒前
Gogoal完成签到,获得积分10
34秒前
35秒前
36秒前
晨雾完成签到 ,获得积分10
37秒前
JingyuHuang发布了新的文献求助10
39秒前
天雨流芳发布了新的文献求助20
40秒前
zhou完成签到,获得积分10
41秒前
41秒前
LC完成签到 ,获得积分10
45秒前
岁晚发布了新的文献求助10
47秒前
48秒前
48秒前
lhp完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325781
关于积分的说明 10224254
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649