掺杂剂
兴奋剂
材料科学
卤化物
钙钛矿(结构)
价(化学)
离子
间质缺损
金属
化学物理
无机化学
化学工程
光电子学
结晶学
化学
冶金
有机化学
工程类
作者
Yepin Zhao,İlhan Yavuz,Minhuan Wang,Marc H. Weber,Mingjie Xu,Joo‐Hong Lee,Shaun Tan,Tianyi Huang,Dong Meng,Rui Wang,Jingjing Xue,Sung‐Joon Lee,Sang‐Hoon Bae,Anni Zhang,Seung‐Gu Choi,Yanfeng Yin,Jin Liu,Tae Hee Han,Yantao Shi,Hongru Ma
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2022-11-17
卷期号:21 (12): 1396-1402
被引量:158
标识
DOI:10.1038/s41563-022-01390-3
摘要
Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.
科研通智能强力驱动
Strongly Powered by AbleSci AI