IR thermography & NN models for damaged component thickness detection

热成像 组分(热力学) 计算机科学 红外线的 人工智能 光学 物理 热力学
作者
Chunming Ai,Haichuan Lin,Pingping Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-90041-z
摘要

To achieve rapid detection of damage thickness in metal components using infrared thermography, a combination of heat transfer theory and image theory was employed. This involved theoretical analysis, finite element numerical simulation, a BP neural network prediction model, and infrared thermography experiments. Infrared thermal wave experiments were conducted under different heating temperatures. By analyzing the obtained temperature data, the response characteristics of surface temperature distribution to component thickness were investigated. The COMSOL numerical simulation software was used to simulate the surface temperature of the metal components. The bevel-cut metal components were heated to 80 °C, 105 °C, and 130 °C, and the fitted experimental temperature data were analyzed in conjunction with the simulated temperature data of the bevel-cut metal components. It was found that the fitted experimental temperature rise curve aligned with the simulated temperature rise curve trend. A comparative analysis of the simulation results and experimental values showed that the simulated temperature rise curve was basically consistent with the fitted experimental temperature curve, validating the feasibility of using numerical simulation as a substitute for experiments. The numerical simulation data were divided into a training set and a prediction set in an 8:2 ratio. Through training with the BP neural network, the predicted data were found to be basically consistent with the experimental data, verifying the feasibility of using the BP neural network for rapid detection of damage thickness in metal components. This laid the foundation for the subsequent promotion and application of BP neural network technology for rapid detection of damage thickness in metal components. This study holds significant importance for the application of neural network-based rapid detection technology for metal component thickness in the engineering field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DD完成签到,获得积分10
1秒前
1秒前
凶狠的乐巧完成签到,获得积分10
1秒前
2秒前
春悦826完成签到 ,获得积分10
2秒前
眼睛大的乐儿完成签到,获得积分10
2秒前
bona完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
3秒前
HH完成签到 ,获得积分20
3秒前
打卡下班应助castle采纳,获得10
4秒前
shamy夫妇完成签到,获得积分10
4秒前
12788发布了新的文献求助10
4秒前
吴小白发布了新的文献求助10
4秒前
Ciro发布了新的文献求助10
4秒前
眇鱼完成签到,获得积分10
5秒前
夜願完成签到,获得积分10
5秒前
Xiaque发布了新的文献求助10
5秒前
热心醉蝶发布了新的文献求助10
5秒前
6秒前
lv完成签到,获得积分10
6秒前
Rheanna发布了新的文献求助10
7秒前
372925abc完成签到,获得积分10
7秒前
miniwuye完成签到,获得积分10
7秒前
蓝色的大尾巴鱼完成签到,获得积分10
7秒前
pluto完成签到,获得积分0
8秒前
闪闪凝冬完成签到,获得积分10
8秒前
舒心完成签到 ,获得积分10
8秒前
abc1122发布了新的文献求助10
9秒前
万能图书馆应助tsytwn采纳,获得10
9秒前
卢莹完成签到,获得积分10
9秒前
孝顺的青枫完成签到,获得积分10
9秒前
月月完成签到,获得积分10
10秒前
echogj发布了新的文献求助10
10秒前
情怀应助善逸采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
齐文轩发布了新的文献求助10
10秒前
11秒前
旺仔先生完成签到,获得积分10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236914
求助须知:如何正确求助?哪些是违规求助? 3770850
关于积分的说明 11842693
捐赠科研通 3427025
什么是DOI,文献DOI怎么找? 1880830
邀请新用户注册赠送积分活动 933354
科研通“疑难数据库(出版商)”最低求助积分说明 840252