IR thermography & NN models for damaged component thickness detection

热成像 组分(热力学) 计算机科学 红外线的 人工智能 光学 物理 热力学
作者
Chunming Ai,Haichuan Lin,Pingping Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-90041-z
摘要

To achieve rapid detection of damage thickness in metal components using infrared thermography, a combination of heat transfer theory and image theory was employed. This involved theoretical analysis, finite element numerical simulation, a BP neural network prediction model, and infrared thermography experiments. Infrared thermal wave experiments were conducted under different heating temperatures. By analyzing the obtained temperature data, the response characteristics of surface temperature distribution to component thickness were investigated. The COMSOL numerical simulation software was used to simulate the surface temperature of the metal components. The bevel-cut metal components were heated to 80 °C, 105 °C, and 130 °C, and the fitted experimental temperature data were analyzed in conjunction with the simulated temperature data of the bevel-cut metal components. It was found that the fitted experimental temperature rise curve aligned with the simulated temperature rise curve trend. A comparative analysis of the simulation results and experimental values showed that the simulated temperature rise curve was basically consistent with the fitted experimental temperature curve, validating the feasibility of using numerical simulation as a substitute for experiments. The numerical simulation data were divided into a training set and a prediction set in an 8:2 ratio. Through training with the BP neural network, the predicted data were found to be basically consistent with the experimental data, verifying the feasibility of using the BP neural network for rapid detection of damage thickness in metal components. This laid the foundation for the subsequent promotion and application of BP neural network technology for rapid detection of damage thickness in metal components. This study holds significant importance for the application of neural network-based rapid detection technology for metal component thickness in the engineering field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的冰旋完成签到,获得积分10
2秒前
书生也是小郎中完成签到 ,获得积分10
3秒前
fanicky完成签到,获得积分10
3秒前
lu完成签到,获得积分10
4秒前
梅竹完成签到,获得积分10
4秒前
Lesile完成签到,获得积分10
5秒前
浩气长存完成签到 ,获得积分10
5秒前
斯奈克完成签到,获得积分10
6秒前
Teko完成签到,获得积分10
9秒前
2520完成签到 ,获得积分10
9秒前
化龙关注了科研通微信公众号
10秒前
淡然冬灵完成签到,获得积分10
10秒前
在水一方应助大胆的语堂采纳,获得10
11秒前
Hello应助廾匸采纳,获得10
12秒前
12秒前
13秒前
透明的世界完成签到,获得积分10
13秒前
yeyuchenfeng完成签到,获得积分10
14秒前
路人完成签到,获得积分0
17秒前
18秒前
砳熠完成签到 ,获得积分10
20秒前
zmd完成签到 ,获得积分10
20秒前
酷酷菲音发布了新的文献求助10
21秒前
22秒前
Keyuuu30完成签到,获得积分0
24秒前
菠萝水手完成签到,获得积分10
24秒前
KK完成签到,获得积分10
25秒前
清风完成签到 ,获得积分10
25秒前
冷酷新柔完成签到,获得积分10
25秒前
葡萄小伊ovo完成签到 ,获得积分10
27秒前
霹雳Young完成签到 ,获得积分10
27秒前
东风完成签到,获得积分10
28秒前
cgliuhx发布了新的文献求助10
29秒前
29秒前
泥過完成签到 ,获得积分10
31秒前
31秒前
能干冰露完成签到,获得积分10
32秒前
32秒前
付艳完成签到,获得积分10
32秒前
大媛大靳吃地瓜完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333744
关于积分的说明 10263363
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511