化学
质子
电子
氢
原子物理学
光化学
核物理学
物理
有机化学
作者
Tao Yang,Boning Wu,Chunmei Ding,Xianchang Yan,Wenming Tian,Shengye Jin
摘要
Monolayer MoS2 is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS2. The charge transfer behavior at the substrate-MoS2 interface is nonclassical, exhibiting a liquid-gated electron injection behavior, the underlying mechanism of which remain under debate. To investigate this, we employ nanosecond time-resolved spectroelectrochemistry to probe the electron injection dynamics into monolayer MoS2 under operando HER conditions. Simultaneously, transient current measurements provide insights into the electron density at the substrate. By combining the electron density obtained from the MoS2 through spectroelectrochemical analysis with the electron density at the conductive substrate derived from transient current measurements, we explore the electron injection dynamics and characterize the current density potential (J-E) behavior at the substrate-MoS2 interface. Our findings show that the electron injection barrier and capability correlate strongly with proton concentration in the electrolyte. This relationship likely reflects the electron concentration-dependent conductivity of MoS2, where higher proton concentrations lead to fewer stray electrons before injection begins.
科研通智能强力驱动
Strongly Powered by AbleSci AI