Detection of Schizophrenia Based on EEG Signal Using Vision Transformer Techniques

脑电图 计算机科学 变压器 精神分裂症(面向对象编程) 人工智能 计算机视觉 语音识别 模式识别(心理学) 心理学 神经科学 工程类 电气工程 电压 程序设计语言
作者
Prince Patel,Hari Kishan Kondaveeti,Santosh Kumar Satapathy,Namya Vyas
标识
DOI:10.1109/incoft60753.2023.10425650
摘要

Schizophrenia is a serious and long-lasting condition characterized by disturbed beliefs, difficulties with thinking, and experiencing things that are not real, which impact emotions, behavior, and thoughts. Detecting and treating schizophrenia early is important to prevent long-term consequences. Electroencephalogram (EEG) data is a biological marker that can identify hidden changes in the brain during schizophrenia. However, EEG signals are unstable and have low intensity, making extracting meaningful information challenging. In this study, we propose using a vision transformer technique, which operates in the time-frequency domain, to detect schizophrenia automatically. The model was built and evaluated using three different validation approaches, including ten-fold cross-validation, with separate publicly available schizophrenia data sets. A new method for automated EEG-based schizophrenia detection has been developed using the DeiT model time-frequency (TF) input images. The method was evaluated on EEG recordings from 45 schizophrenia patients and 39 healthy controls, using morlet wavelet scattering. The overall accuracy of the method was 91% for subject-independent classification. The authors suggest that the ViT model could be used as a disease detection tool for not only schizophrenia but also other neurological symptoms. The suggested model's accuracy rate on dataset 2 was 84.64%, with 49 participants with schizophrenia and 32 healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
子车茗应助koss采纳,获得30
刚刚
量子星尘发布了新的文献求助10
4秒前
高大绝义发布了新的文献求助20
5秒前
5秒前
6秒前
apple发布了新的文献求助10
7秒前
123完成签到 ,获得积分10
8秒前
Jamie完成签到,获得积分10
9秒前
10秒前
寻找组织应助yyy采纳,获得30
10秒前
10秒前
10秒前
fchwpo发布了新的文献求助10
11秒前
11秒前
龙龙完成签到,获得积分10
13秒前
13秒前
Kiritoshi应助小威采纳,获得100
14秒前
耍酷的梦桃完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
大方雁露发布了新的文献求助10
17秒前
科目三应助apple采纳,获得10
17秒前
英姑应助涅槃采纳,获得10
18秒前
19秒前
早期早睡发布了新的文献求助10
19秒前
20秒前
20秒前
郭娅楠发布了新的文献求助10
20秒前
comm发布了新的文献求助10
21秒前
勤恳澜发布了新的文献求助10
22秒前
曾建完成签到 ,获得积分10
22秒前
新火应助俊俏的紫菜采纳,获得20
23秒前
天意如此完成签到,获得积分10
23秒前
Brave完成签到,获得积分10
24秒前
乐乐应助科研通管家采纳,获得10
25秒前
xxfsx应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
6666应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492034
求助须知:如何正确求助?哪些是违规求助? 4590380
关于积分的说明 14430051
捐赠科研通 4522666
什么是DOI,文献DOI怎么找? 2477973
邀请新用户注册赠送积分活动 1463068
关于科研通互助平台的介绍 1435723