EM-Trans: Edge-Aware Multimodal Transformer for RGB-D Salient Object Detection

计算机视觉 人工智能 变压器 RGB颜色模型 突出 计算机科学 互补性(分子生物学) GSM演进的增强数据速率 水准点(测量) 模式识别(心理学) 工程类 电气工程 电压 大地测量学 生物 地理 遗传学
作者
Geng Chen,Qingyue Wang,Bo Dong,Ruitao Ma,Nian Liu,Huazhu Fu,Yong Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2024.3358858
摘要

RGB-D salient object detection (SOD) has gained tremendous attention in recent years. In particular, transformer has been employed and shown great potential. However, existing transformer models usually overlook the vital edge information, which is a major issue restricting the further improvement of SOD accuracy. To this end, we propose a novel edge-aware RGB-D SOD transformer, called, which explicitly models the edge information in a dual-band decomposition framework. Specifically, we employ two parallel decoder networks to learn the high-frequency edge and low-frequency body features from the low-and high-level features extracted from a two-steam multimodal backbone network, respectively. Next, we propose a cross-attention complementarity exploration module to enrich the edge/body features by exploiting the multimodal complementarity information. The refined features are then fed into our proposed color-hint guided fusion module for enhancing the depth feature and fusing the multimodal features. Finally, the resulting features are fused using our deeply supervised progressive fusion module, which progressively integrates edge and body features for predicting saliency maps. Our model explicitly considers the edge information for accurate RGB-D SOD, overcoming the limitations of existing methods and effectively improving the performance. Extensive experiments on benchmark datasets demonstrate that is an effective RGB-D SOD framework that outperforms the current state-of-the-art models, both quantitatively and qualitatively. A further extension to RGB-T SOD demonstrates the promising potential of our model in various kinds of multimodal SOD tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
AQ关闭了AQ文献求助
7秒前
英姑应助znlion采纳,获得10
11秒前
爆米花应助起风了采纳,获得10
13秒前
传奇3应助小马哥36采纳,获得10
13秒前
14秒前
AQ关闭了AQ文献求助
18秒前
秀丽菠萝完成签到,获得积分10
18秒前
21秒前
耶路生完成签到,获得积分10
21秒前
21秒前
称心的绿竹完成签到,获得积分10
22秒前
sc完成签到,获得积分10
22秒前
机智毛豆完成签到,获得积分10
23秒前
23秒前
24秒前
小马哥36完成签到,获得积分10
24秒前
整齐星月发布了新的文献求助10
25秒前
25秒前
然然完成签到,获得积分10
26秒前
酷波er应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
小马哥36发布了新的文献求助10
29秒前
无花果应助整齐星月采纳,获得10
30秒前
31秒前
31秒前
33秒前
Alan完成签到,获得积分10
34秒前
出生发布了新的文献求助10
36秒前
洁净磬发布了新的文献求助30
37秒前
qian72133完成签到,获得积分10
37秒前
酸奶麦片儿发布了新的文献求助150
39秒前
fanlin完成签到,获得积分0
39秒前
糊涂生活糊涂过完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780594
求助须知:如何正确求助?哪些是违规求助? 3326087
关于积分的说明 10225657
捐赠科研通 3041166
什么是DOI,文献DOI怎么找? 1669236
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669