PKAT: Pre-training in Collaborative Knowledge Graph Attention Network for Recommendation

计算机科学 培训(气象学) 图形 知识图 人工智能 理论计算机科学 物理 气象学
作者
LU Yi-hong,Chang‐Dong Wang,Pei-Yuan Lai,Jianhuang Lai
标识
DOI:10.1109/icdm58522.2023.00054
摘要

With the rapid growth of online platforms and the abundance of available information, personalized recommender systems have become essential for assisting users in discovering relevant and interesting content. Among the various methods, knowledge-aware recommendation model has achieved notable success by leveraging the rich semantic information encoded in knowledge graphs. However, it overlooks the fact that users' historical click sequences can better reflect their preferences within a period of time, thus imposing certain limitations on the recommendation performance. On the other hand, the application of pre-trained language models in recommender systems has demonstrated increasingly significant potential, as they can capture sequential patterns and dependencies within users' historical click sequences and effectively capture contextual information in user-item interactions. To this end, we propose a hybrid recommendation model that leverages Pre-training in the collaborative Knowledge graph Attention neTwork (PKAT), to extract both the high-order connectivity information in collaborative knowledge graphs and the contextual information in users' historical click sequences captured by Bidirectional Encoder Representations from Transformers (BERT). The collaborative knowledge graph attention network enables the model to effectively capture the intricate relationships between users, items, and knowledge entities, thus enhancing the representation learning process. Furthermore, what sets PKAT apart from other state-of-the-art knowledge-aware recommendation methods is the incorporation of the BERT language model. This integration allows PKAT to capture the contextual sequence information of user behavior, enabling it to generate more accurate and personalized recommendations. Extensive experiments are conducted on multiple benchmark datasets. And the results demonstrate that our PKAT model outperforms several state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫荆完成签到 ,获得积分10
刚刚
刘硕发布了新的文献求助10
刚刚
浮浮世世完成签到,获得积分10
3秒前
camellia发布了新的文献求助10
3秒前
5秒前
8秒前
努力发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
健壮诗兰发布了新的文献求助10
13秒前
14秒前
圈圈发布了新的文献求助20
15秒前
小蘑菇应助wlei采纳,获得10
16秒前
大方的觅海完成签到,获得积分10
17秒前
17秒前
刘硕发布了新的文献求助10
17秒前
Kyle完成签到,获得积分10
17秒前
深情安青应助John采纳,获得10
18秒前
19秒前
19秒前
www完成签到 ,获得积分10
20秒前
22秒前
潇洒的浩然完成签到,获得积分10
22秒前
缓慢天抒发布了新的文献求助10
22秒前
lu完成签到,获得积分20
25秒前
张爱学发布了新的文献求助10
25秒前
儒雅的雁山完成签到 ,获得积分10
26秒前
香蕉觅云应助chen采纳,获得10
27秒前
洛杉矶的奥斯卡完成签到,获得积分10
28秒前
su完成签到 ,获得积分10
28秒前
景代丝完成签到,获得积分10
29秒前
英俊的铭应助张爱学采纳,获得10
30秒前
31秒前
34秒前
酷波er应助c57采纳,获得10
34秒前
怪胎发布了新的文献求助10
34秒前
流沙无言完成签到 ,获得积分10
35秒前
圈圈完成签到,获得积分10
35秒前
Driscoll发布了新的文献求助10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965327
求助须知:如何正确求助?哪些是违规求助? 3510663
关于积分的说明 11154407
捐赠科研通 3244991
什么是DOI,文献DOI怎么找? 1792739
邀请新用户注册赠送积分活动 874026
科研通“疑难数据库(出版商)”最低求助积分说明 804150