水泥
土壤水分
岩土工程
水泥土
材料科学
环境科学
表征(材料科学)
复合材料
地质学
土壤科学
纳米技术
作者
Prince Kumar,Anand J. Puppala,Surya Sarat Chandra Congress,Jeb S. Tingle
标识
DOI:10.1061/jmcee7.mteng-16394
摘要
The mechanistic-empirical pavement design guide (M-EPDG) recommends the use of resilient modulus (MR) for characterization of subgrade soils. Subgrade soils may not always have enough strength and stiffness to support the pavement structure. Therefore, a certain type of soil improvement method using cement, lime, or other stabilization techniques is often needed to enhance the strength and stiffness properties of weak subgrade soils. The cement-stabilized soils show brittle behavior under compression loading, which can induce cracking in overlying pavement layers. In general, polymer-treated soils show a semiductile or ductile behavior. It is important to look for combined cement and polymer treatments to address brittle behavior issues as well as moisture susceptibility while maintaining strength and moduli properties. A research study was conducted to understand the strength, resilient, and ductile behaviors of sandy soils treated with cement and a combination of cement and vinyl acetate ethylene (VAE) copolymer. Engineering tests such as unconfined compressive strength (UCS) and resilient modulus tests were conducted on both control and treated soil specimens cured for 7 days. Tests were conducted on specimens before and after immersing in water bath for 4 h to investigate the moisture susceptibility. In these tests, an increase in UCS was observed after cement and cement-VAE treatments as compared to control soil specimens. Results showed that cement-VAE-treated soils exhibited an increase in the axial strain at failure, indicating the semiductile behavior compared to cement-treated specimens. An improvement in the resilient moduli was observed after treatments. Subsequently, two of three-parameter models were used to analyze resilient modulus formulations with stress conditions and determined the regression constants. In conclusion, the study revealed that the use of VAE copolymer improved the stress-strain responses of cement-treated soils and imparted closer to the semiductile behavior, which will reduce cracking in overlying pavement structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI