A multi-stage forecasting system for daily ocean tidal energy based on secondary decomposition, optimized gate recurrent unit and error correction

希尔伯特-黄变换 均方误差 算法 模式(计算机接口) 潮汐能 计算机科学 人工智能 滤波器(信号处理) 统计 工程类 数学 计算机视觉 操作系统 海洋工程
作者
Hong Yang,Qingsong Wu,Guohui Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:449: 141303-141303 被引量:17
标识
DOI:10.1016/j.jclepro.2024.141303
摘要

Tidal energy, as a new energy, has very high research potential and practical application value. For the characteristics of tidal energy such as nonstationarity and nonlinearity, a multi-stage forecasting system for daily ocean tidal energy is proposed. It is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), refined composite multi-scale dispersion entropy (RCMDE), empirical mode decomposition based on time-varying filter modified by white shark optimizer (WSOTVFEMD), improved gate recurrent unit using parasitic salp swarm algorithm based on differential evolution (PDESSAGRU) and error correction using CNN (CNN-EC), named as ICEEMDAN-RCMDE-WSOTVFEMD-PDESSAGRU–CNN–EC. Firstly, decompose tidal energy into a series of intrinsic mode functions (IMFs) by ICEEMDAN, and divide IMFs into high-complexity and low-complexity components by RCMDE. Next, secondly decompose the reconstructed high-complexity components into high-complexity parts by WSOTVFEMD. Afterwards, separately predict each component of the high-complexity parts and the low-complexity components by PDESSA, and reconstruct the predicted results to obtain original predicting results. In the end, decompose the error into error IMFs (EIMFs) by ICEEMDAN, predict EIMFs with convolutional neural network (CNN) respectively to acquire error predicting results, and reconstruct original predicting results and error predicting results to acquire the final results. Taking the tidal energy of the American cities including San Francisco, Sitka, and Wauna as case studies, the results show that the proposed system has high prediction accuracy after experiments with 13 comparative models in each city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助wise111采纳,获得10
1秒前
隐形曼青应助快乐的惜寒采纳,获得10
1秒前
1秒前
2秒前
3秒前
程许发布了新的文献求助10
4秒前
大力沛萍完成签到,获得积分10
5秒前
5秒前
完美世界应助震动的小萱采纳,获得10
5秒前
pony发布了新的文献求助10
6秒前
平常的听露完成签到,获得积分20
6秒前
7秒前
7秒前
糖炒李子完成签到 ,获得积分10
7秒前
握瑾怀瑜发布了新的文献求助10
8秒前
8秒前
10秒前
Jasper应助亓亓采纳,获得10
10秒前
10秒前
11秒前
程许完成签到,获得积分20
11秒前
残忆完成签到 ,获得积分10
12秒前
13秒前
pony完成签到,获得积分10
13秒前
llll发布了新的文献求助10
14秒前
Akim应助笨笨的数据线采纳,获得10
14秒前
风趣小小完成签到,获得积分10
14秒前
搜集达人应助ANDRT采纳,获得10
14秒前
14秒前
15秒前
包容一刀发布了新的文献求助10
15秒前
15秒前
科研dog完成签到,获得积分10
15秒前
跳跃的巧凡完成签到,获得积分10
16秒前
香xiang发布了新的文献求助10
16秒前
ZCT完成签到,获得积分10
17秒前
CHB只争朝夕完成签到 ,获得积分10
18秒前
向觅夏发布了新的文献求助10
19秒前
wise111发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807468
求助须知:如何正确求助?哪些是违规求助? 3352217
关于积分的说明 10357930
捐赠科研通 3068242
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853