A multi-stage forecasting system for daily ocean tidal energy based on secondary decomposition, optimized gate recurrent unit and error correction

希尔伯特-黄变换 均方误差 算法 模式(计算机接口) 潮汐能 计算机科学 人工智能 滤波器(信号处理) 统计 工程类 数学 计算机视觉 操作系统 海洋工程
作者
Hong Yang,Qingsong Wu,Guohui Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:449: 141303-141303 被引量:17
标识
DOI:10.1016/j.jclepro.2024.141303
摘要

Tidal energy, as a new energy, has very high research potential and practical application value. For the characteristics of tidal energy such as nonstationarity and nonlinearity, a multi-stage forecasting system for daily ocean tidal energy is proposed. It is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), refined composite multi-scale dispersion entropy (RCMDE), empirical mode decomposition based on time-varying filter modified by white shark optimizer (WSOTVFEMD), improved gate recurrent unit using parasitic salp swarm algorithm based on differential evolution (PDESSAGRU) and error correction using CNN (CNN-EC), named as ICEEMDAN-RCMDE-WSOTVFEMD-PDESSAGRU–CNN–EC. Firstly, decompose tidal energy into a series of intrinsic mode functions (IMFs) by ICEEMDAN, and divide IMFs into high-complexity and low-complexity components by RCMDE. Next, secondly decompose the reconstructed high-complexity components into high-complexity parts by WSOTVFEMD. Afterwards, separately predict each component of the high-complexity parts and the low-complexity components by PDESSA, and reconstruct the predicted results to obtain original predicting results. In the end, decompose the error into error IMFs (EIMFs) by ICEEMDAN, predict EIMFs with convolutional neural network (CNN) respectively to acquire error predicting results, and reconstruct original predicting results and error predicting results to acquire the final results. Taking the tidal energy of the American cities including San Francisco, Sitka, and Wauna as case studies, the results show that the proposed system has high prediction accuracy after experiments with 13 comparative models in each city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
white发布了新的文献求助10
1秒前
时光友岸发布了新的文献求助10
1秒前
LMH发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
天真飞绿发布了新的文献求助10
6秒前
善学以致用应助浮浮世世采纳,获得10
6秒前
热情迎彤完成签到,获得积分10
6秒前
想睡觉的小笼包完成签到 ,获得积分10
7秒前
NexusExplorer应助外向的易云采纳,获得10
7秒前
yymm完成签到,获得积分10
7秒前
luyunxing发布了新的文献求助10
8秒前
Sun YX发布了新的文献求助10
9秒前
今后应助小德采纳,获得10
10秒前
Wang1991发布了新的文献求助10
10秒前
健康的肺发布了新的文献求助10
10秒前
11秒前
领导范儿应助Zxc采纳,获得10
11秒前
12秒前
涵涵涵hh完成签到,获得积分10
12秒前
13秒前
科目三应助聪慧的凡灵采纳,获得30
13秒前
上官若男应助朴实以丹采纳,获得10
13秒前
1111发布了新的文献求助10
14秒前
大模型应助猪猪hero采纳,获得30
15秒前
15秒前
可爱的函函应助il701采纳,获得10
17秒前
duduguai发布了新的文献求助10
17秒前
Jeffrey完成签到,获得积分10
17秒前
高灵雨完成签到,获得积分10
18秒前
wszqd发布了新的文献求助10
19秒前
科研通AI5应助大力天佑采纳,获得20
19秒前
leaolf应助天真飞绿采纳,获得20
19秒前
20秒前
Sun YX完成签到,获得积分10
20秒前
22秒前
yao完成签到 ,获得积分10
23秒前
隐形曼青应助ww采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4623273
求助须知:如何正确求助?哪些是违规求助? 4023185
关于积分的说明 12454236
捐赠科研通 3707603
什么是DOI,文献DOI怎么找? 2044919
邀请新用户注册赠送积分活动 1076995
科研通“疑难数据库(出版商)”最低求助积分说明 959739