EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records

计算机科学 判决 人工智能 自然语言处理 图形 卷积神经网络 图形数据库 生物医学文本挖掘 文本图 文本挖掘 情报检索 理论计算机科学
作者
Guishen Wang,Xiaoxue Lou,Fang Guo,Devin Kwok,Chen Cao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1668-1679 被引量:6
标识
DOI:10.1109/jbhi.2023.3346210
摘要

Text classification is a central part of natural language processing, with important applications in understanding the knowledge behind biomedical texts including electronic health records (EHR). In this article, we propose a novel heterogeneous graph convolutional network method for classifying EHR texts. Our method, called EHR-HGCN, is able to combine context-sensitive word and sentence embeddings with structural sentence-level and word-level relation information to perform text classification. EHR-HGCN reframes EHR text classification as a graph classification task to better capture structural information about the document using a heterogeneous graph. To mine contextual information from a document, EHR-HGCN first applies a bidirectional recurrent neural network (BiRNN) on word embeddings obtained via Global Vectors for word representation (GloVe) to obtain context-sensitive word-level and sentence-level embeddings. To mine structural relationships from the document, EHR-HGCN then constructs a heterogeneous graph over the word and sentence embeddings, where sentence-word and word-word relationships are represented by graph edges. Finally, a heterogeneous graph convolutional neural network is used to classify documents by their graph representation. We evaluate EHR-HGCN on a variety of standard text classification benchmarks and find that EHR-HGCN has higher accuracy and F1-score than other representative machine learning and deep learning methods. We also apply EHR-HGCN to the MedLit benchmark and find it performs with high accuracy and F1-score on the task of section classification in EHR texts. Our ablation experiments show that the heterogeneous graph construction and heterogeneous graph convolutional network are critical to the performance of EHR-HGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BYQ发布了新的文献求助10
2秒前
森鹿应助研友_LMBa6n采纳,获得30
4秒前
一点通发布了新的文献求助10
4秒前
8秒前
一点通完成签到,获得积分10
9秒前
00完成签到 ,获得积分10
9秒前
WWWUBING完成签到,获得积分10
12秒前
务实澜完成签到 ,获得积分10
12秒前
朱先生完成签到 ,获得积分10
13秒前
13秒前
生瓜蛋子发布了新的文献求助10
14秒前
17秒前
BYQ完成签到,获得积分20
18秒前
雪梨101发布了新的文献求助10
19秒前
默默灭绝发布了新的文献求助10
22秒前
22秒前
田様应助yaoliwen采纳,获得10
23秒前
森鹿应助研友_LMBa6n采纳,获得30
23秒前
爱吃辣条的科研小笨蛋完成签到 ,获得积分10
23秒前
27秒前
28秒前
28秒前
天真咖啡豆完成签到,获得积分10
28秒前
30秒前
汉堡包应助一个正经人采纳,获得10
31秒前
nuannuan发布了新的文献求助10
31秒前
上官若男应助听春风采纳,获得10
31秒前
哆啦A梦发布了新的文献求助10
32秒前
yaoliwen发布了新的文献求助10
32秒前
依依发布了新的文献求助10
33秒前
Hello应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得30
34秒前
所所应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782342
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233274
捐赠科研通 3042733
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876