Identification of 130 Dental Implant Types Using Ensemble Deep Learning

可用性 固定装置 植入 鉴定(生物学) 射线照相术 人工智能 牙种植体 集成学习 计算机科学 精确性和召回率 召回 深度学习 牙科 口腔正畸科 模式识别(心理学) 医学 外科 工程类 心理学 人机交互 生物 机械工程 认知心理学 植物
作者
Hyun-Jun Kong,Sang-Ho Eom,Jin-Yong Yoo,Jun-Hyeok Lee
出处
期刊:International Journal of Oral & Maxillofacial Implants [Quintessence Publishing Company]
卷期号:38 (1): 150-156 被引量:15
标识
DOI:10.11607/jomi.9818
摘要

Purpose: To evaluate the accuracy and clinical usability of an identification model using ensemble deep learning for 130 dental implant types. Materials and Methods: A total of 28,112 panoramic radiographs were obtained from 30 domestic and foreign dental clinics. From these panoramic radiographs, 45,909 implant fixture images were extracted and labeled based on electronic medical records. Dental implants were classified into 130 types according to the manufacturer, the manufacturer's implant system, and the diameter and length of the implant fixture. Regions of interest were manually cropped, and data augmentation was performed. According to the minimum number of images collected per implant type, the datasets were classified into three sets: an overall total of 130 and two subsets that consisted of 79 and 58 types. EfficientNet and Res2Next algorithms were used for image classification in deep learning. After testing the performance of the two models, the ensemble learning technique was applied to improve accuracy. The top-1 accuracy, top-5 accuracy, precision, recall, and F1 scores were calculated according to algorithms and datasets. Results: For the 130 types, the top-1 accuracy, top-5 accuracy, precision, recall, and F1 scores were 75.27, 95.02, 78.84, 75.27, and 74.89, respectively. In all cases, the ensemble model performed better than EfficientNet and Res2Next. When using the ensemble model, the accuracy increased as the number of types decreased. Conclusion: The ensemble deep learning model for the identification of 130 types of dental implants showed higher accuracy than the existing algorithms. To further improve the performance and clinical usability of the model, images with higher quality and fine-tuned algorithms optimized for implant identification are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执玉笛完成签到,获得积分10
刚刚
共享精神应助haha采纳,获得10
刚刚
lhb完成签到,获得积分10
1秒前
2秒前
3秒前
英吉利25发布了新的文献求助20
3秒前
3秒前
爆米花应助WAM采纳,获得10
3秒前
王王王完成签到,获得积分10
4秒前
丘比特应助iiiau采纳,获得10
5秒前
我爱螺蛳粉完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
山海不说话完成签到,获得积分10
8秒前
LJ徽发布了新的文献求助10
9秒前
小莫发布了新的文献求助10
9秒前
文静涵梅发布了新的文献求助10
10秒前
无恙完成签到,获得积分10
11秒前
在水一方应助Halo采纳,获得10
11秒前
施旭佳完成签到,获得积分10
12秒前
12秒前
Garnieta发布了新的文献求助10
15秒前
慧慧发布了新的文献求助10
16秒前
Jaaay发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
11完成签到,获得积分10
20秒前
21秒前
21秒前
单薄的蓝天完成签到,获得积分10
21秒前
21秒前
yy完成签到,获得积分10
22秒前
22秒前
qian发布了新的文献求助30
23秒前
费尔南达完成签到,获得积分10
23秒前
23秒前
脑洞疼应助7udo采纳,获得30
24秒前
核桃发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482703
求助须知:如何正确求助?哪些是违规求助? 3938694
关于积分的说明 12218383
捐赠科研通 3593958
什么是DOI,文献DOI怎么找? 1976476
邀请新用户注册赠送积分活动 1013584
科研通“疑难数据库(出版商)”最低求助积分说明 906702