亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of tea culture communication path based on the principal component analysis method

主成分分析 展示 路径分析(统计学) 特征向量 差异(会计) 校长(计算机安全) 统计 数学 计算机科学 地理 业务 会计 量子力学 操作系统 物理 考古
作者
Da Li,Yaozhao Zhong
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns.2023.1.00101
摘要

Abstract Tea culture is the main component of Chinese traditional culture, and the analysis of tea culture dissemination paths can promote the process of Chinese traditional culture dissemination to the outside world. This paper standardizes the tea culture dissemination paths based on the principal component analysis method. The correlation matrix of the standardized data is tested for sampling suitability, and the eigenvalues and eigenvectors are calculated to derive the principal components. The variance contribution rate and the cumulative contribution rate of the variance of the principal components are calculated, and then the scores of each principal component are derived and evaluated comprehensively. Accordingly, the main communication paths of tea culture are new media communication, museum collection and exhibition, and tea trade. Based on this, this paper analyzes the communication effects of the communication paths, and the results show that: the number of followers of public accounts related to tea culture reached 63,214 in 2021, an increase of nearly 24% compared with 2019. The total number of visitors to the museum collection and exhibition of tea culture was 28,004 in 2021, an increase of 22.7% compared with the previous year. The number of tea exports and export countries both increased significantly in 2021 compared with 2012. It can be seen that the main dissemination paths of tea culture obtained by the principal component analysis method are effective for the dissemination of tea culture and also provide a reference meaning for the dissemination of other traditional Chinese culture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
量子星尘发布了新的文献求助10
39秒前
CodeCraft应助he采纳,获得10
1分钟前
丁老三完成签到 ,获得积分10
1分钟前
ruirui_love完成签到,获得积分10
1分钟前
魏青瑜应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
fabricio10发布了新的文献求助10
2分钟前
he发布了新的文献求助10
2分钟前
2分钟前
fabricio10完成签到,获得积分10
2分钟前
故槿完成签到 ,获得积分10
2分钟前
李志强发布了新的文献求助10
2分钟前
浮游应助发文章采纳,获得60
2分钟前
Lucas应助he采纳,获得10
2分钟前
李志强完成签到,获得积分10
2分钟前
zzgpku完成签到,获得积分0
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
4分钟前
4分钟前
he发布了新的文献求助10
4分钟前
桐桐应助he采纳,获得10
4分钟前
Viiigo完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
小船发布了新的文献求助10
6分钟前
6分钟前
小船完成签到,获得积分20
6分钟前
he发布了新的文献求助10
6分钟前
Ethan完成签到,获得积分10
6分钟前
gszy1975完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
脑洞疼应助he采纳,获得10
6分钟前
半喇柯基完成签到 ,获得积分10
6分钟前
111完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470184
求助须知:如何正确求助?哪些是违规求助? 4573079
关于积分的说明 14338028
捐赠科研通 4500099
什么是DOI,文献DOI怎么找? 2465545
邀请新用户注册赠送积分活动 1453896
关于科研通互助平台的介绍 1428525