Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 判别式 卷积神经网络 图形 人工智能 卷积(计算机科学) 上下文图像分类 图像(数学) 人工神经网络 理论计算机科学
作者
Sheng Wan,Chen Gong,Ping Zhong,Bo Du,Lefei Zhang,Jian Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3162-3177 被引量:398
标识
DOI:10.1109/tgrs.2019.2949180
摘要

Convolutional neural network (CNN) has demonstrated impressive ability to represent hyperspectral images and to achieve promising results in hyperspectral image classification. However, traditional CNN models can only operate convolution on regular square image regions with fixed size and weights, and thus, they cannot universally adapt to the distinct local regions with various object distributions and geometric appearances. Therefore, their classification performances are still to be improved, especially in class boundaries. To alleviate this shortcoming, we consider employing the recently proposed graph convolutional network (GCN) for hyperspectral image classification, as it can conduct the convolution on arbitrarily structured non-Euclidean data and is applicable to the irregular image regions represented by graph topological information. Different from the commonly used GCN models that work on a fixed graph, we enable the graph to be dynamically updated along with the graph convolution process so that these two steps can be benefited from each other to gradually produce the discriminative embedded features as well as a refined graph. Moreover, to comprehensively deploy the multiscale information inherited by hyperspectral images, we establish multiple input graphs with different neighborhood scales to extensively exploit the diversified spectral-spatial correlations at multiple scales. Therefore, our method is termed multiscale dynamic GCN (MDGCN). The experimental results on three typical benchmark data sets firmly demonstrate the superiority of the proposed MDGCN to other state-of-the-art methods in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的怀柔完成签到,获得积分10
2秒前
demotlx发布了新的文献求助10
3秒前
just do it完成签到,获得积分10
3秒前
jhb完成签到 ,获得积分10
4秒前
xinC完成签到 ,获得积分10
5秒前
BBking完成签到,获得积分10
9秒前
demotlx完成签到,获得积分10
9秒前
科研通AI5应助朽木采纳,获得10
9秒前
10秒前
今后应助nano_yan采纳,获得10
11秒前
SU完成签到,获得积分10
15秒前
16秒前
wait完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
Yojane完成签到,获得积分10
18秒前
可爱的猪猪完成签到,获得积分10
20秒前
21秒前
hrzmlily发布了新的文献求助10
21秒前
Yojane发布了新的文献求助30
21秒前
ling发布了新的文献求助10
22秒前
26秒前
27秒前
feiyang完成签到 ,获得积分10
28秒前
29秒前
30秒前
nano_yan发布了新的文献求助10
30秒前
32秒前
33秒前
XYZ发布了新的文献求助10
33秒前
唯梦发布了新的文献求助10
34秒前
Summeryz920发布了新的文献求助10
36秒前
FashionBoy应助唯梦采纳,获得10
37秒前
hrzmlily完成签到,获得积分10
38秒前
朽木发布了新的文献求助10
38秒前
鲁路修完成签到,获得积分10
39秒前
42秒前
琛zyc123完成签到,获得积分10
42秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944