Oral health and cardiovascular disease risk factors and mortality of cerebral haemorrhage, cerebral infarction and unspecified stroke in elderly men: A prospective cohort study

医学 危险系数 冲程(发动机) 置信区间 比例危险模型 内科学 糖尿病 脑梗塞 体质指数 前瞻性队列研究 队列研究 内分泌学 缺血 机械工程 工程类
作者
Lise Lund Håheim,Per Nafstad,Per E. Schwarze,Ingar Olsen,Kjersti S. Rønningen,Dag S. Thelle
出处
期刊:Scandinavian Journal of Public Health [SAGE Publishing]
卷期号:48 (7): 762-769 被引量:9
标识
DOI:10.1177/1403494819879351
摘要

Background: Stroke mortality comprises different specific diagnoses as cerebral infarction, different haemorrhagic conditions and unspecified stroke. This study seeks to explore the prediction of oral health indicators versus known cardiovascular disease risk factors for stroke mortality. Methods: Altogether, 12,764 men aged 58 to 77 years were invited to the health screening Oslo II in the year 2000. It included general medical measurements and questionnaire information. Mortality data were supplied by Statistics Norway for the 6530 attending men. Cox proportional hazards regression analyses were used to establish prediction models for mortality. Results: Oral health by number of tooth extractions >10 was found to be an independent predictor for cerebral infarction hazard ratio = 2.92, 95% confidence interval (1.24–6.89). This was independent of HDL-Cholesterol (inversely) hazard ratio = 0.21, 95% confidence interval (0.06–0.76), frequent alcohol consumption (drinking 4–7 times per week) hazard ratio = 3.58, 95% confidence interval (1.40–9.13) and diabetes hazard ratio = 4.28, 95% confidence interval (1.68–10.89). Predictors for cerebral haemorrhage were age, hs-C-reactive protein and body mass index (inversely). Age and total cholesterol (inversely) were predictors for unspecified stroke. Conclusions: Oral health measured by number of tooth extractions >10 was an independent predictor for cerebral infarction in addition to age, HDL-C, hs-C-reactive protein and diabetes. The pattern of risk factors varied between the specific stroke diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gino完成签到,获得积分0
刚刚
科研小白完成签到,获得积分10
3秒前
4秒前
4秒前
深情安青应助威武的涵梅采纳,获得10
4秒前
4秒前
科研小白发布了新的文献求助10
5秒前
vanilla完成签到,获得积分10
6秒前
7秒前
yydragen应助嘿嘿采纳,获得50
8秒前
oui完成签到,获得积分20
9秒前
10秒前
10秒前
潇洒过客发布了新的文献求助10
10秒前
oui发布了新的文献求助10
11秒前
Jasper应助柯凌采纳,获得10
13秒前
Orange应助MengLu采纳,获得10
13秒前
英俊的铭应助wd采纳,获得10
13秒前
14秒前
堃kun发布了新的文献求助10
14秒前
嘿嘿重新开启了ylc文献应助
18秒前
21秒前
22完成签到,获得积分10
22秒前
科研小菜鸡完成签到,获得积分10
23秒前
NexusExplorer应助孟宇采纳,获得10
23秒前
不安梦桃发布了新的文献求助10
23秒前
24秒前
26秒前
26秒前
gus应助南兮采纳,获得10
26秒前
wd发布了新的文献求助10
27秒前
28秒前
29秒前
ading关注了科研通微信公众号
29秒前
FashionBoy应助夏侯乌采纳,获得10
29秒前
生动路人发布了新的文献求助10
30秒前
孟宇完成签到,获得积分20
31秒前
周杰伦发布了新的文献求助10
34秒前
34秒前
nonTUT完成签到,获得积分20
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090277
求助须知:如何正确求助?哪些是违规求助? 3628892
关于积分的说明 11505181
捐赠科研通 3341073
什么是DOI,文献DOI怎么找? 1836589
邀请新用户注册赠送积分活动 904535
科研通“疑难数据库(出版商)”最低求助积分说明 822367