Integration of modern computational chemistry and ASPEN PLUS for chemical process design

偏心因子 热力学 化学 蒸汽压 汽化焓 沸点 汽化 理想气体 状态方程 过程(计算) 工艺工程 有机化学 计算机科学 操作系统 物理 工程类
作者
Chang‐Che Tsai,Shiang‐Tai Lin
出处
期刊:Aiche Journal [Wiley]
卷期号:66 (10) 被引量:7
标识
DOI:10.1002/aic.16987
摘要

Abstract Thermodynamic properties and fluid phase equilibria are crucial for the design and development of a chemical process. However, such data may not always be available, particularly for fine or specialty chemicals. In this work, we evaluate the reliability of using modern computational chemistry combined with recently developed predictive thermodynamic models to provide all the thermodynamic properties required in process design with ASPEN PLUS. Specifically, the G3 method is used for the ideal gas heat capacities and properties of formation, and the PR+COSMOSAC equation of state and COSMO‐SAC activity coefficient model are utilized for the properties and phase behaviors of pure and mixture fluids. These methods are chosen because they do not require any species‐dependent parameters and can, in principle, be applied to any chemical species. For a set of 972 chemicals, it is found that most properties can be predicted with a satisfactory accuracy (less than 10%: critical temperature [5%], critical pressure [10%], critical volume [5%], constant pressure ideal gas heat capacity [5%], and heat of vaporization [10%], except for the acentric factor [33%] and vapor pressure [73%]). Furthermore, the predicted results show little bias suggesting that these theoretically based methods are reliable for new chemicals for which experimental data are not yet available. Our analyses show that better accuracy in the prediction of vapor pressure and formation enthalpy and free energy is necessary for the design of chemical processes without relying on any experimental input. Nonetheless, these methods often provide reliable relative property values (e.g., relative value of normal boiling temperature can be predicted with 94% accuracy), making it possible to screen for new chemicals for improving existing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
人间生巧发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
烟花应助无000采纳,获得10
4秒前
4秒前
啊啊啊发布了新的文献求助20
5秒前
洛洛发布了新的文献求助10
6秒前
张小星发布了新的文献求助10
8秒前
就叫柠檬吧应助陈年旧事采纳,获得10
8秒前
活泼的雁玉完成签到,获得积分10
10秒前
小理发布了新的文献求助10
10秒前
科研通AI5应助K_采纳,获得30
11秒前
11秒前
11秒前
iamxx_完成签到,获得积分10
12秒前
善学以致用应助奚斌采纳,获得10
12秒前
张小星完成签到,获得积分10
13秒前
13秒前
简单山水完成签到,获得积分10
14秒前
15秒前
李爱国应助飞快的代天采纳,获得10
15秒前
思源应助苏苏2025采纳,获得10
18秒前
二号发布了新的文献求助10
18秒前
18秒前
21秒前
辛勤的晓兰完成签到,获得积分10
21秒前
SHY发布了新的文献求助10
21秒前
霸气谷蕊完成签到,获得积分10
22秒前
优秀小笼包完成签到,获得积分10
23秒前
23秒前
jersey给jersey的求助进行了留言
23秒前
怡然帅完成签到 ,获得积分10
24秒前
优秀的尔风完成签到,获得积分10
24秒前
25秒前
27秒前
斯文败类应助SHY采纳,获得10
28秒前
dzps发布了新的文献求助10
29秒前
K_发布了新的文献求助30
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010