Gesture Recognition Using Reflected Visible and Infrared Lightwave Signals

手势 手势识别 计算机科学 人工智能 计算机视觉 光电探测器 语音识别 模式识别(心理学) 光学 物理
作者
Li Yu,Hisham Abuella,Md Zobaer Islam,John F. O’Hara,Christopher Crick,Sabit Ekin
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:51 (1): 44-55 被引量:22
标识
DOI:10.1109/thms.2020.3043302
摘要

In this article, we demonstrate the ability to recognize hand gestures in a noncontact wireless fashion using only incoherent light signals reflected from a human subject. Fundamentally distinguished from radar, lidar, and camera-based sensing systems, this sensing modality uses only a low-cost light source (e.g., LED) and a sensor (e.g., photodetector). The lightwave-based gesture recognition system identifies different gestures from the variations in light intensity reflected from the subject's hand within a short (20-35 cm) range. As users perform different gestures, scattered light forms unique, statistically repeatable, time-domain signatures. These signatures can be learned by repeated sampling to obtain the training model against which unknown gesture signals are tested and categorized. These time-domain variations of the lightwave signals reflected from hand are denoised, standardized, and then classified by using machine learning classification tools such as $K$-nearest neighbors and support vector machine. Performance evaluations have been conducted with eight gestures, five subjects, different distances and lighting conditions, and visible and infrared light sources. The results demonstrate the best hand gesture recognition performance of infrared sensing at 20 cm with an average of 96% accuracy. The developed gesture recognition system is low-cost, effective, and noncontact technology for numerous human-computer interaction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的土豆完成签到,获得积分10
4秒前
5秒前
SciGPT应助KevenDing采纳,获得10
5秒前
李健应助小明同学采纳,获得10
6秒前
红枫没有微雨怜完成签到 ,获得积分10
9秒前
路过蜻蜓完成签到,获得积分10
10秒前
12秒前
13秒前
田様应助小王子采纳,获得10
15秒前
怡然可乐发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
21秒前
天天快乐应助神途采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得30
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
NN应助科研通管家采纳,获得10
22秒前
期期应助科研通管家采纳,获得10
22秒前
TARTALIA应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得30
22秒前
23秒前
期期应助科研通管家采纳,获得10
23秒前
hjyylab应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得20
23秒前
Owen应助科研通管家采纳,获得30
23秒前
5430完成签到,获得积分10
25秒前
乐观的饭饭完成签到 ,获得积分10
26秒前
充电宝应助独特翎采纳,获得10
26秒前
法克西瓜汁完成签到,获得积分10
27秒前
29秒前
30秒前
QIU完成签到 ,获得积分10
30秒前
way完成签到,获得积分10
31秒前
32秒前
尹天扬完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
小苏打完成签到,获得积分10
35秒前
神途发布了新的文献求助10
35秒前
aaaliisda发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862686
求助须知:如何正确求助?哪些是违规求助? 3405187
关于积分的说明 10643774
捐赠科研通 3128673
什么是DOI,文献DOI怎么找? 1725362
邀请新用户注册赠送积分活动 831042
科研通“疑难数据库(出版商)”最低求助积分说明 779516