Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 色谱法 基因 算法 化学 几何学
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助中旬日采纳,获得10
刚刚
samantha完成签到 ,获得积分10
刚刚
不吃香菜的爆炸小飞鱼完成签到 ,获得积分10
刚刚
爆米花应助浅塘采纳,获得10
刚刚
Elpppp发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
喵菌发布了新的文献求助10
4秒前
6秒前
鹿c3完成签到,获得积分10
6秒前
华仔应助decdier采纳,获得30
6秒前
6秒前
洁白的故人完成签到,获得积分10
6秒前
7秒前
贾舒涵发布了新的文献求助10
7秒前
斯文败类应助llzuo采纳,获得10
7秒前
Jorna完成签到,获得积分10
7秒前
威武巧曼完成签到,获得积分10
8秒前
8秒前
无花果应助牙套狗狗采纳,获得10
9秒前
9秒前
迷人雪碧发布了新的文献求助10
9秒前
小蘑菇应助beizi采纳,获得10
9秒前
xm发布了新的文献求助10
9秒前
9秒前
噫嗨举报求助违规成功
9秒前
bc举报求助违规成功
9秒前
whatever举报求助违规成功
9秒前
9秒前
中旬日完成签到,获得积分10
10秒前
紫薯球完成签到,获得积分10
10秒前
cgjj完成签到,获得积分10
10秒前
JamesPei应助陈龙采纳,获得30
10秒前
Derek完成签到,获得积分0
11秒前
Jro完成签到,获得积分10
12秒前
小兰花发布了新的文献求助10
12秒前
宋66完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793153
求助须知:如何正确求助?哪些是违规求助? 3337864
关于积分的说明 10287289
捐赠科研通 3054366
什么是DOI,文献DOI怎么找? 1675978
邀请新用户注册赠送积分活动 803972
科研通“疑难数据库(出版商)”最低求助积分说明 761646