Ensemble Learning for Early‐Response Prediction of Antidepressant Treatment in Major Depressive Disorder

支持向量机 人工智能 计算机科学 集成学习 机器学习 神经影像学 集合预报 交叉验证 特征(语言学) 重性抑郁障碍 模式识别(心理学) 医学 语言学 哲学 认知 精神科
作者
Cong Pei,Yurong Sun,Jinlong Zhu,Xinyi Wang,Yujie Zhang,Shuqiang Zhang,Zhijian Yao,Qing Lü
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (1): 161-171 被引量:36
标识
DOI:10.1002/jmri.27029
摘要

Background In order to reduce unsuccessful treatment trials for depression, neuroimaging and genetic information can be considered as biomarkers. Together with machine‐learning methods, prediction models have proved to be valuable for baseline prediction. Purpose To propose an ensemble learning modeling framework that integrates imaging and genetic information for individualized baseline prediction of early‐stage treatment response of antidepressants in major depressive disorder (MDD). Study Type Prospective. Subjects In all, 98 inpatients with MDD. Field Strength/Sequence 3.0T MRI and gradient‐echo echo‐planar imaging sequence. Assessment Participants were divided into responders and nonresponders based on reducing rates of HDRS‐6 after early‐stage treatment of 2 weeks. Fourteen brain regions of interest were selected according to previous studies. An ensemble learning modeling framework was used to integrate imaging data and genetic data. Statistical Tests Support vector machine (SVM) with linear kernel was utilized to integrate multimode information and then to construct the prediction model. Leave‐one‐out cross‐validation (LOOCV) was used to evaluate the performance. The position characteristics obtained through SVM‐RFE (recursive feature elimination) algorithm and LOOCV was considered to compare each feature's relative importance for the prediction model. Results Compared with the single‐level prediction model, the ensemble learning prediction model showed improvement in prediction performance (accuracy from 0.61 to 0.86 with imaging data and genetic data). Integrated with 14 priori brain regions, the region of interest (ROI) map ensemble learning prediction model can achieve a performance that is analogous with the model with information from whole‐brain regions (both with accuracy of 0.81). The integration of genetic features further improved the sensitivity of prediction (sensitivity from 0.78 to 0.87 under the ensemble learning framework). Data Conclusion Our ensemble learning prediction model demonstrated significant advantages in interpretability and information integration. The findings may provide more assistance for clinical treatment selection in MDD at the individual level. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:161–171.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小王完成签到,获得积分10
刚刚
大水牛姐姐完成签到,获得积分10
刚刚
欧阳振应助愉快新筠采纳,获得10
刚刚
???完成签到,获得积分10
刚刚
星辰大海应助竹马子采纳,获得10
1秒前
意想不到的名字关注了科研通微信公众号
1秒前
六叶草完成签到,获得积分10
2秒前
2秒前
香菜发布了新的文献求助10
2秒前
2秒前
单纯的奇异果完成签到,获得积分10
3秒前
肥鱼不会飞完成签到,获得积分10
3秒前
曾曾完成签到,获得积分10
3秒前
石石刘发布了新的文献求助10
3秒前
3秒前
归尘发布了新的文献求助10
4秒前
xueerbx发布了新的文献求助10
4秒前
Jocd完成签到,获得积分10
4秒前
独特凡松完成签到,获得积分10
5秒前
科研通AI2S应助youayouzaii采纳,获得10
5秒前
brd完成签到,获得积分10
5秒前
Dr.Li发布了新的文献求助40
6秒前
唱跳双c完成签到,获得积分10
6秒前
花城发布了新的文献求助10
7秒前
xiaowen发布了新的文献求助10
7秒前
隐形曼青应助小右采纳,获得10
8秒前
雷霆康康完成签到,获得积分10
9秒前
liagse完成签到,获得积分10
10秒前
星期八完成签到,获得积分10
10秒前
等待的盼波完成签到,获得积分10
10秒前
杨新影发布了新的文献求助10
11秒前
清新的冰凡完成签到,获得积分10
11秒前
自信鑫鹏完成签到,获得积分10
12秒前
佳佳发布了新的文献求助10
13秒前
13秒前
Solarenergy完成签到,获得积分0
13秒前
黄芩完成签到 ,获得积分10
14秒前
Ava应助全糖采纳,获得30
14秒前
传统的大白完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582