电解质
化学
锂(药物)
化学工程
金属锂
相间
电极
纳米技术
金属
材料科学
物理化学
有机化学
细胞生物学
工程类
内分泌学
生物
医学
作者
Sufu Liu,Xiao Ji,Jie Yue,Singyuk Hou,Pengfei Wang,Chunyu Cui,Ji Chen,Bowen Shao,Jingru Li,Fudong Han,Jiangping Tu,Chunsheng Wang
摘要
Engineering a stable solid electrolyte interphase (SEI) is critical for suppression of lithium dendrites. However, the formation of a desired SEI by formulating electrolyte composition is very difficult due to complex electrochemical reduction reactions. Here, instead of trial-and-error of electrolyte composition, we design a Li-11 wt % Sr alloy anode to form a SrF2-rich SEI in fluorinated electrolytes. Density functional theory (DFT) calculation and experimental characterization demonstrate that a SrF2-rich SEI has a large interfacial energy with Li metal and a high mechanical strength, which can effectively suppress the Li dendrite growth by simultaneously promoting the lateral growth of deposited Li metal and the SEI stability. The Li–Sr/Cu cells in 2 M LiFSI-DME show an outstanding Li plating/stripping Coulombic efficiency of 99.42% at 1 mA cm–2 with a capacity of 1 mAh cm–2 and 98.95% at 3 mA cm–2 with a capacity of 2 mAh cm–2, respectively. The symmetric Li–Sr/Li–Sr cells also achieve a stable electrochemical performance of 180 cycles at an extremely high current density of 30 mA cm–2 with a capacity of 1 mAh cm–2. When paired with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, Li–Sr/LFP cells in 2 M LiFSI-DME electrolytes and Li–Sr/NMC811 cells in 1 M LiPF6 in FEC:FEMC:HFE electrolytes also maintain excellent capacity retention. Designing SEIs by regulating Li-metal anode composition opens up a new and rational avenue to suppress Li dendrites.
科研通智能强力驱动
Strongly Powered by AbleSci AI