The migration of training samples towards dynamic global land cover mapping

土地覆盖 样品(材料) 培训(气象学) 像素 遥感 变更检测 计算机科学 环境科学 人工智能 地理 土地利用 气象学 工程类 土木工程 化学 色谱法
作者
Huabing Huang,Jie Wang,Caixia Liu,Lü Liang,Congcong Li,Peng Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:161: 27-36 被引量:144
标识
DOI:10.1016/j.isprsjprs.2020.01.010
摘要

High quality training samples are essential for global land cover mapping. Traditionally, training samples are collected by field work or via manual interpretation based on high-resolution Google Earth images. Due to the difficulty of training sample collection, regular global land cover mapping is still a challenge. In this study, we developed an automatic training sample migration method based on the first all-season sample set in 2015 and all available archived Landsat 5 TM images in the Google Earth Engine cloud-based platform. By measuring the spectral similarity and spectral distance between the reference spectral and image spectral, we detected and identified the change state of training sample pixels in 2010, 2005, 2000, 1995, and 1990. Overall, 170,925 (66%), 118,586 (64%), 112,092 (67%), 154,931 (63%), and 147,267 (60%) respective training sample pixels were found with no changes over each five-year period. The detection (user's) accuracies of migrated training sample pixels as no change for the first four time periods were 99.25%, 97.65%, 95.03%, and 92.98%, respectively, by comparing with CCI-LC (Climate Change Initiative Land Cover) maps. Classification experiment showed that the migrated training samples can obtain a similar classification accuracy of 71.42% in 2010, when compared to the classification result in 2015 using the same number of training samples. Our study provides a potential solution to resolve the problem of lack of training samples for dynamic global land cover mapping efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruilong发布了新的文献求助10
1秒前
思源应助博修采纳,获得10
2秒前
3秒前
ironsilica完成签到,获得积分10
3秒前
殷一丹完成签到 ,获得积分10
3秒前
林业光魔发布了新的文献求助10
3秒前
4秒前
5秒前
知名完成签到,获得积分20
5秒前
哈基米德给zhouleiwang的求助进行了留言
7秒前
zuhangzhao发布了新的文献求助10
9秒前
Orange应助知名采纳,获得10
10秒前
yar应助小富婆采纳,获得10
13秒前
13秒前
zz发布了新的文献求助10
15秒前
xuyingtao发布了新的文献求助10
18秒前
归仔发布了新的文献求助10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得30
19秒前
19秒前
愿好应助科研通管家采纳,获得10
19秒前
JC应助林业光魔采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
爆米花应助ruilong采纳,获得10
20秒前
Antigen发布了新的文献求助10
20秒前
飞翔的蒲公英完成签到,获得积分10
20秒前
21秒前
21秒前
蒲公英完成签到,获得积分10
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084979
求助须知:如何正确求助?哪些是违规求助? 3624001
关于积分的说明 11496086
捐赠科研通 3338215
什么是DOI,文献DOI怎么找? 1835198
邀请新用户注册赠送积分活动 903738
科研通“疑难数据库(出版商)”最低求助积分说明 821943