Federated Learning in Mobile Edge Networks: A Comprehensive Survey

计算机科学 GSM演进的增强数据速率 电信
作者
Wei Yang Bryan Lim,Nguyen Cong Luong,Dinh Thai Hoang,Yutao Jiao,Ying‐Chang Liang,Qiang Yang,Dusit Niyato,Chunyan Miao
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 2031-2063 被引量:1831
标识
DOI:10.1109/comst.2020.2986024
摘要

In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloud-based Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助444采纳,获得10
1秒前
欣喜豌豆发布了新的文献求助10
2秒前
2秒前
小巧大山完成签到,获得积分10
2秒前
3秒前
Ava应助浮名半生采纳,获得10
3秒前
小新爱看文献完成签到,获得积分10
4秒前
FashionBoy应助霓虹熄世界清采纳,获得10
4秒前
lanzi发布了新的文献求助20
4秒前
科目三应助shan采纳,获得10
5秒前
阿斯蒂芬发布了新的文献求助10
5秒前
Kalimba完成签到,获得积分10
6秒前
Jasper应助烈阳采纳,获得30
6秒前
6秒前
cy发布了新的文献求助10
7秒前
7秒前
今后应助liang采纳,获得10
7秒前
8秒前
一念初见发布了新的文献求助10
8秒前
桐桐应助DoIt采纳,获得50
10秒前
yuhui发布了新的文献求助10
10秒前
烟花应助huihui采纳,获得10
11秒前
11秒前
安详的惜梦完成签到 ,获得积分10
11秒前
哇wwwww完成签到,获得积分10
11秒前
感动书竹完成签到,获得积分10
11秒前
12秒前
12秒前
高高的从波完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
希望天下0贩的0应助Cici采纳,获得10
13秒前
陈谨完成签到 ,获得积分10
13秒前
paul完成签到,获得积分10
13秒前
tw0125完成签到 ,获得积分10
13秒前
hbsand应助感动书竹采纳,获得20
14秒前
Owen应助jeep先生采纳,获得10
14秒前
niceweiwei完成签到 ,获得积分10
15秒前
浮名半生发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793230
求助须知:如何正确求助?哪些是违规求助? 3337971
关于积分的说明 10287780
捐赠科研通 3054528
什么是DOI,文献DOI怎么找? 1675991
邀请新用户注册赠送积分活动 804036
科研通“疑难数据库(出版商)”最低求助积分说明 761715