元数据
计算机科学
磁盘格式化
受控词汇
情报检索
接口(物质)
质谱法
注释
比例(比率)
数据库
数据科学
化学
万维网
色谱法
物理
操作系统
最大气泡压力法
人工智能
气泡
并行计算
量子力学
作者
Alan K. Jarmusch,Mingxun Wang,Christine M. Aceves,Rohit S. Advani,Shaden Aguirre,Alexander A. Aksenov,Gajender Aleti,Allegra T. Aron,Anelize Bauermeister,Sanjana Bolleddu,Amina Bouslimani,Andrés Mauricio Caraballo‐Rodríguez,Rama Chaar,Roxana Coras,Emmanuel O. Elijah,Madeleine Ernst,Julia M. Gauglitz,Emily C. Gentry,Makhai Husband,Scott A. Jarmusch
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2020-08-17
卷期号:17 (9): 901-904
被引量:113
标识
DOI:10.1038/s41592-020-0916-7
摘要
We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-analysis of one’s own data. ReDU enables multiple types of analyses, including finding chemicals and associated metadata, comparing the shared and different chemicals between groups of samples, and metadata-filtered, repository-scale molecular networking. Repository-scale reanalysis of public mass spectrometry-based metabolomics data is facilitated by the Reanalysis of Data User (ReDU) interface, a system that uses consistent formatting and controlled vocabularies for metadata capture.
科研通智能强力驱动
Strongly Powered by AbleSci AI