Speech Emotion Recognition of Teachers in Classroom Teaching

语音识别 计算机科学 Mel倒谱 特征提取 人工智能 隐马尔可夫模型 特征(语言学) 人工神经网络 模式识别(心理学) 加权 预处理器 噪音(视频) 医学 语言学 哲学 图像(数学) 放射科
作者
Jie Liang,Xiaoyan Zhao,Zhaohui Zhang
标识
DOI:10.1109/ccdc49329.2020.9164823
摘要

With the development of information technology, speech emotion recognition technology was applied to the classroom evaluation, which is helpful to improve teaching quality by analyzing and quantifying evaluation indexes in real time. The paper studied teachers' speech signals and a set of emotion detection audio processing system was designed. The teachers' speech was used to judge their emotions. The recurrent neural network (RNN) algorithm was used to construct a speech emotion recognition classification model. Emotions were reclassified based on preprocessing of original data such as pre-weighting, frame-adding window and endpoint detection, so as to establish the speech emotion corpus of teacher evaluation system. By improving the traditional feature extraction process of Mel Frequency Cepstral Coefficents(MFCC), the second-order differential process was added to eliminate the convolution noise of MFCC. Especially, the 1-dimensional energy feature is added to the 39-dimensional MFCC coefficient for experiment, and the results showed that the average recognition rate of the 40-dimensional feature parameter improved 2.53% than the 39-dimensional parameter. Through experiments on the unit network structure of the classification model, the Long Short-Term Memory (LSTM) optimization model was obtained, and the average recognition rate of the five kinds of speech emotion classification reached 85.32%. Experiments showed that the improved MFCC feature value and neural network can improve the recognition rate of speech emotion more effectively than the traditional speech emotion recognition method, which can be used for speech emotion recognition in classroom teaching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜小芽完成签到 ,获得积分10
刚刚
NexusExplorer应助moeny85102采纳,获得10
刚刚
烟花应助JOKER采纳,获得10
刚刚
开水完成签到,获得积分10
刚刚
刚刚
1秒前
pcr163应助咻咻采纳,获得50
1秒前
cctoday完成签到,获得积分10
1秒前
1秒前
搞怪不斜完成签到,获得积分20
1秒前
hqq116发布了新的文献求助10
2秒前
CR7应助可靠的南露采纳,获得10
3秒前
大海完成签到,获得积分10
3秒前
隐形曼青应助姜酱酱酱采纳,获得10
4秒前
leiztar完成签到,获得积分10
4秒前
有一颗卤蛋完成签到,获得积分10
4秒前
4秒前
鹿梦完成签到,获得积分10
4秒前
6秒前
sunflower完成签到,获得积分0
6秒前
linda268完成签到,获得积分10
6秒前
丘比特应助rayqiang采纳,获得10
6秒前
SYLH应助暖粥采纳,获得10
6秒前
6秒前
1234567890完成签到,获得积分10
7秒前
隐形荟完成签到 ,获得积分10
7秒前
格物致知发布了新的文献求助30
7秒前
小树完成签到 ,获得积分10
7秒前
爱笑的蘑菇完成签到,获得积分10
7秒前
7秒前
8秒前
Lee发布了新的文献求助10
9秒前
10秒前
西柚完成签到,获得积分10
10秒前
sunshine完成签到,获得积分10
10秒前
ZZ完成签到,获得积分10
11秒前
jingdaitianxiang完成签到 ,获得积分10
11秒前
xiaorang完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048931
求助须知:如何正确求助?哪些是违规求助? 3586737
关于积分的说明 11397162
捐赠科研通 3313401
什么是DOI,文献DOI怎么找? 1822795
邀请新用户注册赠送积分活动 894736
科研通“疑难数据库(出版商)”最低求助积分说明 816471