清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Speech Emotion Recognition of Teachers in Classroom Teaching

语音识别 计算机科学 Mel倒谱 特征提取 人工智能 隐马尔可夫模型 特征(语言学) 人工神经网络 模式识别(心理学) 加权 预处理器 噪音(视频) 医学 图像(数学) 放射科 哲学 语言学
作者
Jie Liang,Xiaoyan Zhao,Zhaohui Zhang
标识
DOI:10.1109/ccdc49329.2020.9164823
摘要

With the development of information technology, speech emotion recognition technology was applied to the classroom evaluation, which is helpful to improve teaching quality by analyzing and quantifying evaluation indexes in real time. The paper studied teachers' speech signals and a set of emotion detection audio processing system was designed. The teachers' speech was used to judge their emotions. The recurrent neural network (RNN) algorithm was used to construct a speech emotion recognition classification model. Emotions were reclassified based on preprocessing of original data such as pre-weighting, frame-adding window and endpoint detection, so as to establish the speech emotion corpus of teacher evaluation system. By improving the traditional feature extraction process of Mel Frequency Cepstral Coefficents(MFCC), the second-order differential process was added to eliminate the convolution noise of MFCC. Especially, the 1-dimensional energy feature is added to the 39-dimensional MFCC coefficient for experiment, and the results showed that the average recognition rate of the 40-dimensional feature parameter improved 2.53% than the 39-dimensional parameter. Through experiments on the unit network structure of the classification model, the Long Short-Term Memory (LSTM) optimization model was obtained, and the average recognition rate of the five kinds of speech emotion classification reached 85.32%. Experiments showed that the improved MFCC feature value and neural network can improve the recognition rate of speech emotion more effectively than the traditional speech emotion recognition method, which can be used for speech emotion recognition in classroom teaching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
我是老大应助科研通管家采纳,获得10
30秒前
43秒前
迪仔完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
kevin完成签到 ,获得积分10
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
1分钟前
mzhang2完成签到 ,获得积分10
2分钟前
qrr发布了新的文献求助10
2分钟前
夜琉璃完成签到 ,获得积分10
2分钟前
2分钟前
124165lu发布了新的文献求助10
2分钟前
2分钟前
合不着完成签到 ,获得积分10
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
加贝完成签到 ,获得积分10
2分钟前
xcuwlj完成签到 ,获得积分10
2分钟前
小白白完成签到 ,获得积分10
2分钟前
qrr完成签到,获得积分10
2分钟前
灵均完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
apt完成签到 ,获得积分10
3分钟前
zzzwhy发布了新的文献求助10
3分钟前
马成双完成签到 ,获得积分10
3分钟前
long发布了新的文献求助10
3分钟前
3分钟前
Arvin发布了新的文献求助10
3分钟前
zzzwhy完成签到,获得积分10
3分钟前
r93527005完成签到,获得积分10
4分钟前
快发论文完成签到,获得积分20
4分钟前
快发论文发布了新的文献求助20
4分钟前
qinghe完成签到 ,获得积分10
4分钟前
繁荣的安白完成签到 ,获得积分10
5分钟前
依霏完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534583
求助须知:如何正确求助?哪些是违规求助? 4622588
关于积分的说明 14582660
捐赠科研通 4562738
什么是DOI,文献DOI怎么找? 2500362
邀请新用户注册赠送积分活动 1479864
关于科研通互助平台的介绍 1451095