Application of Machine Learning to Identify Clustering of Cardiometabolic Risk Factors in U.S. Adults

逻辑回归 医学 机器学习 聚类分析 人工智能 随机森林 排名(信息检索) 梯度升压 人口 计算机科学 环境卫生
作者
Xiyue Liao,David Kerr,Jessikah Morales,Ian Duncan
出处
期刊:Diabetes Technology & Therapeutics [Mary Ann Liebert, Inc.]
卷期号:21 (5): 245-253 被引量:9
标识
DOI:10.1089/dia.2018.0390
摘要

Aims: The aim of this study is to compare some machine learning methods with traditional statistical parametric analyses using logistic regression to investigate the relationship of risk factors for diabetes and cardiovascular (cardiometabolic risk) for U.S. adults using a cross-sectional data from participants in a wellness improvement program. Methods: Logistic regression was used to find the relationship between individual risk factors, predictor and cardiometabolic risk. Supervised machine learning methods were used to predict risk and produce a ranking of variables' importance. A clustering method was used to identify subpopulations of interest. Predictors were divided into those that are nonmodifiable and those that are modifiable. Results: The population comprised 217,254 adults of whom 8.1% had diabetes. Using logistic regression, six variables were identified to be negatively related and eleven were positively related to cardiometabolic risk. Three supervised machine learning classifiers (random forest, gradient boosting, and bagging) were applied with average AUC to be 0.806. Each classifier also produced a ranking of variables' importance. Four subgroups were identified with a k-medoid clustering algorithm, which were mainly distinguished by gender and diabetes status. Conclusions: The study illustrates that machine learning is an important addition to traditional logistic regression in terms of identifying important cardiometabolic risk factors and ranking their importance and the potential for interventions based on lifestyle and medications at an individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助2150号采纳,获得10
2秒前
xzgwbh应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
SYLH应助科研通管家采纳,获得30
4秒前
5秒前
5秒前
cocrv发布了新的文献求助10
6秒前
Aeon发布了新的文献求助10
7秒前
南寅完成签到,获得积分10
7秒前
yang发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
cdliuchao发布了新的文献求助30
9秒前
香蕉觅云应助wsh采纳,获得10
11秒前
ddd发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
cocrv完成签到,获得积分10
13秒前
5ec发布了新的文献求助10
14秒前
打打应助cdliuchao采纳,获得10
15秒前
15秒前
冰魂应助魏伯安采纳,获得10
16秒前
gapper完成签到 ,获得积分10
16秒前
zzc完成签到,获得积分20
17秒前
zhimajiang完成签到 ,获得积分10
17秒前
7123发布了新的文献求助10
17秒前
姚波完成签到,获得积分10
17秒前
一天一个苹果儿完成签到 ,获得积分10
19秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885471
求助须知:如何正确求助?哪些是违规求助? 3427562
关于积分的说明 10755987
捐赠科研通 3152461
什么是DOI,文献DOI怎么找? 1740329
邀请新用户注册赠送积分活动 840194
科研通“疑难数据库(出版商)”最低求助积分说明 785189