忠诚
计算机科学
正规化(语言学)
发电机(电路理论)
图像(数学)
生成语法
比例(比率)
人工智能
集合(抽象数据类型)
高保真
样品(材料)
机器学习
自回归模型
算法
模式识别(心理学)
数学
统计
工程类
功率(物理)
物理
化学
电气工程
程序设计语言
电信
量子力学
色谱法
作者
Andrew Brock,Jeff Donahue,Karen Simonyan
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:2215
标识
DOI:10.48550/arxiv.1809.11096
摘要
Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Frechet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.6.
科研通智能强力驱动
Strongly Powered by AbleSci AI