Using meteorological normalisation to detect interventions in air quality time series

空气质量指数 环境科学 气象学 共线性 航程(航空) 时间序列 计算机科学 地理 机器学习 统计 工程类 数学 航空航天工程
作者
Stuart K. Grange,David C. Carslaw
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:653: 578-588 被引量:261
标识
DOI:10.1016/j.scitotenv.2018.10.344
摘要

Interventions used to improve air quality are often difficult to detect in air quality time series due to the complex nature of the atmosphere. Meteorological normalisation is a technique which controls for meteorology/weather over time in an air quality time series so intervention exploration (and trend analysis) can be assessed in a robust way. A meteorological normalisation technique, based on the random forest machine learning algorithm was applied to routinely collected observations from two locations where known interventions were imposed on transportation activities which were expected to change ambient pollutant concentrations. The application of progressively stringent limits on the content of sulfur in marine fuels was very clearly represented in ambient sulfur dioxide (SO2) monitoring data in Dover, a port city in the South East of England. When the technique was applied to the oxides of nitrogen (NOx and NO2) time series at London Marylebone Road (a Central London monitoring site located in a complex urban environment), the normalised time series highlighted clear changes in NO2 and NOx which were linked to changes in primary (directly emitted) NO2 emissions at the location. The clear features in the time series were illuminated by the meteorological normalisation procedure and were not observable in the raw concentration data alone. The lack of a need for specialised inputs, and the efficient handling of collinearity and interaction effects makes the technique flexible and suitable for a range of potential applications for air quality intervention exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助木兆采纳,获得30
刚刚
上官若男应助wuqi采纳,获得10
2秒前
3秒前
清脆如娆完成签到 ,获得积分10
3秒前
feitian201861完成签到,获得积分10
4秒前
k sir发布了新的文献求助10
5秒前
5秒前
研友_89Nm7L完成签到,获得积分10
6秒前
Xxxuan发布了新的文献求助10
7秒前
hades发布了新的文献求助10
8秒前
啊咧咧完成签到 ,获得积分10
9秒前
王轶华完成签到,获得积分10
12秒前
大气映冬发布了新的文献求助10
12秒前
敖江风云完成签到,获得积分10
13秒前
13秒前
韦远侵完成签到,获得积分10
13秒前
小蘑菇应助k sir采纳,获得10
15秒前
cdercder应助Xxxuan采纳,获得10
15秒前
17秒前
温谷完成签到 ,获得积分10
18秒前
Future完成签到,获得积分10
18秒前
爱科研的佳慧完成签到,获得积分10
19秒前
20秒前
Gakay发布了新的文献求助10
22秒前
Future发布了新的文献求助20
22秒前
大气映冬完成签到,获得积分10
23秒前
威武的翠安完成签到 ,获得积分10
23秒前
小典发布了新的文献求助10
24秒前
24秒前
luckin发布了新的文献求助10
24秒前
阿鑫完成签到 ,获得积分10
25秒前
芭娜55完成签到 ,获得积分10
26秒前
小宝完成签到,获得积分10
26秒前
27秒前
28秒前
jixuchance完成签到,获得积分10
29秒前
找回自己完成签到,获得积分10
32秒前
科研通AI5应助小典采纳,获得10
33秒前
动次打次完成签到,获得积分0
33秒前
木兆发布了新的文献求助30
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275