Acoustic Radiation Force Impulse (ARFI) Imaging: A Review

声辐射力 声学 脉冲(物理) 传感器 弹性成像 弹性(物理) 刚度 超声波 横波 脉冲响应 材料科学 生物医学工程 剪切(地质) 物理 医学 量子力学 数学分析 数学 复合材料
作者
Kathy Nightingale
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:7 (4): 328-339 被引量:369
标识
DOI:10.2174/157340511798038657
摘要

Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed in this paper utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助喝到几点采纳,获得10
刚刚
酷波er应助葡萄味的果茶采纳,获得10
1秒前
小小杨发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
yoshiki应助科研执修采纳,获得30
4秒前
许甜甜鸭应助奥美拉采纳,获得10
4秒前
CipherSage应助11采纳,获得10
4秒前
G浅浅发布了新的文献求助10
5秒前
Jupiter完成签到,获得积分10
6秒前
aertom完成签到,获得积分10
6秒前
情怀应助机智的著采纳,获得10
6秒前
完美世界应助QQQ采纳,获得10
6秒前
满杯橙橙发布了新的文献求助10
7秒前
少女徐必成完成签到 ,获得积分10
8秒前
王景发布了新的文献求助10
9秒前
123456发布了新的文献求助10
9秒前
田様应助mwt0713采纳,获得10
9秒前
赵立韶华完成签到,获得积分0
9秒前
9秒前
yuncong323完成签到,获得积分10
10秒前
zqb完成签到 ,获得积分10
10秒前
xiaoxiao完成签到,获得积分10
11秒前
11秒前
qiuling完成签到,获得积分10
11秒前
YifanWang应助gc采纳,获得10
11秒前
YifanWang应助gc采纳,获得20
11秒前
YifanWang应助gc采纳,获得10
11秒前
YifanWang应助gc采纳,获得20
11秒前
汉堡包应助gc采纳,获得10
12秒前
你不知道完成签到 ,获得积分10
12秒前
12秒前
正月初九完成签到,获得积分10
12秒前
小彩彩完成签到,获得积分10
12秒前
Xuu完成签到,获得积分10
13秒前
哈哈完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926