Protein deamidation in biopharmaceutical manufacture: understanding, control and impact

去酰胺 生物制药 天冬酰胺 化学 背景(考古学) 生物化学 生化工程 计算生物学 生物技术 氨基酸 生物 工程类 古生物学
作者
David Gervais
出处
期刊:Journal of Chemical Technology & Biotechnology [Wiley]
卷期号:91 (3): 569-575 被引量:69
标识
DOI:10.1002/jctb.4850
摘要

Abstract Understanding of product‐related variants, such as variants with post‐translational modifications, is an important part of biopharmaceutical development. Deamidation is a common post‐translational modification occurring in biopharmaceutical proteins, affecting L‐asparagine (Asn) and to a lesser extent, L‐glutamine (Gln) residues. The rate of deamidation reactions are influenced by factors including protein structure (primary, secondary and higher structure), temperature and pH . In the vast majority of cases, deamidation is undesirable in biopharmaceuticals, and may lead to potential changes in protein structure, function, stability and immunogenicity. Measurement and characterisation of deamidated biopharmaceutical variants may be challenging, particularly with regard to quantitation of the two L‐aspartate isoforms that are created, L‐aspartic acid (Asp) and isoaspartate ( isoAsp ). Deamidation may occur intracellularly or during biopharmaceutical manufacture and storage, and must be understood, minimised and controlled, particularly in a regulatory context. Process control strategies that have been employed to date include alterations to fermentation steps, additives to cell cultures, chromatographic separation of charge variants and protein engineering to remove deamidation‐prone Asn residues. However, the impact of deamidated forms of biopharmaceuticals should also be thoroughly studied, as they may not necessarily represent deleterious changes to the function of the molecule or the quality of the final product. This mini‐review provides a summary of the current understanding of the origins, control and measurement of deamidation during biopharmaceutical development. © 2015 Society of Chemical Industry
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
4秒前
嘿嘿应助L77采纳,获得10
4秒前
zyw完成签到,获得积分10
4秒前
JYX发布了新的文献求助10
6秒前
圆润润呐完成签到 ,获得积分10
7秒前
8秒前
8秒前
Jasper应助zhuiyu采纳,获得30
11秒前
Need_Knowledge完成签到,获得积分10
12秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
zoeeeey完成签到,获得积分10
17秒前
17秒前
18秒前
zoeeeey发布了新的文献求助10
19秒前
19秒前
21秒前
xxxx发布了新的文献求助10
23秒前
lm完成签到,获得积分10
23秒前
南瓜饼完成签到,获得积分10
24秒前
24秒前
25秒前
HM发布了新的文献求助10
25秒前
mycishere发布了新的文献求助10
26秒前
汉堡包应助xllll采纳,获得10
26秒前
活泼的活泼应助豆豆采纳,获得10
27秒前
明理含莲应助Rita采纳,获得10
27秒前
zhuiyu发布了新的文献求助30
27秒前
28秒前
28秒前
29秒前
现代风格完成签到,获得积分10
29秒前
Zzzzz发布了新的文献求助20
31秒前
您好发布了新的文献求助10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240637
求助须知:如何正确求助?哪些是违规求助? 3774364
关于积分的说明 11852948
捐赠科研通 3429558
什么是DOI,文献DOI怎么找? 1882386
邀请新用户注册赠送积分活动 934313
科研通“疑难数据库(出版商)”最低求助积分说明 840937