背景减法
代码本
计算机科学
人工智能
计算机视觉
影子(心理学)
像素
分割
前景检测
水准点(测量)
目标检测
背景图像
对象(语法)
混合模型
模式识别(心理学)
图像(数学)
心理治疗师
地理
大地测量学
心理学
作者
I Kim Sun,Shih-Chung Hsu,Chung-Lin Huang
出处
期刊:Journal of Information Science and Engineering
[Institute of Information Science]
日期:2014-11-01
卷期号:30 (6): 1965-1984
被引量:1
标识
DOI:10.6688/jise.2014.30.6.16
摘要
Real-time foreground object extraction is an important subject for computer vision applications. Model-based background subtraction methods have been used to extract the foreground objects. Different from previous methods, this paper introduces a hybrid codebook-based background subtraction method by combining the mixture of Gaussian (MOG) with the codebook (CB) method. We propose an ellipsoid CB model for modeling the dynamic background with highlight and shadow, and develop a modified shadow/ highlight removal method to overcome the influence of illumination change. Our method can avoid extracting the false foreground pixels (e.g., dark background) or missing the real foreground pixels (e.g., bright foreground). Finally, we have done two experiments to compare the performance of our method with the others based on [18] and the change detection benchmark dataset provided in CVPR 2011, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI