From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation

协变量 数学 普通最小二乘法 协方差 统计 差异(会计) 对比度(视觉) 随机性 协方差分析 线性回归 应用数学 计算机科学 会计 业务 人工智能
作者
Saharon Rosset,Ryan J. Tibshirani
标识
DOI:10.1080/01621459.2018.1424632
摘要

In statistical prediction, classical approaches for model selection and model evaluation based on covariance penalties are still widely used. Most of the literature on this topic is based on what we call the "Fixed-X" assumption, where covariate values are assumed to be nonrandom. By contrast, it is often more reasonable to take a "Random-X" view, where the covariate values are independently drawn for both training and prediction. To study the applicability of covariance penalties in this setting, we propose a decomposition of Random-X prediction error in which the randomness in the covariates contributes to both the bias and variance components. This decomposition is general, but we concentrate on the fundamental case of ordinary least-squares (OLS) regression. We prove that in this setting the move from Fixed-X to Random-X prediction results in an increase in both bias and variance. When the covariates are normally distributed and the linear model is unbiased, all terms in this decomposition are explicitly computable, which yields an extension of Mallows' Cp that we call RCp. RCp also holds asymptotically for certain classes of nonnormal covariates. When the noise variance is unknown, plugging in the usual unbiased estimate leads to an approach that we call RCp ^, which is closely related to Sp, and generalized cross-validation (GCV). For excess bias, we propose an estimate based on the "shortcut-formula" for ordinary cross-validation (OCV), resulting in an approach we call RCp+. Theoretical arguments and numerical simulations suggest that RCp+ is typically superior to OCV, though the difference is small. We further examine the Random-X error of other popular estimators. The surprising result we get for ridge regression is that, in the heavily regularized regime, Random-X variance is smaller than Fixed-X variance, which can lead to smaller overall Random-X error. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Much发布了新的文献求助300
1秒前
2秒前
狼牧羊城完成签到,获得积分10
3秒前
善良的花菜完成签到 ,获得积分10
3秒前
无限涵梅完成签到,获得积分10
4秒前
庚庚完成签到,获得积分10
5秒前
taotao发布了新的文献求助10
7秒前
fff完成签到,获得积分10
7秒前
Rabbit完成签到 ,获得积分10
8秒前
yy关闭了yy文献求助
8秒前
10秒前
寒冷的迎梦完成签到,获得积分10
10秒前
12秒前
清脆的夜白完成签到,获得积分10
14秒前
云雨完成签到,获得积分10
14秒前
危机的煎饼完成签到 ,获得积分10
14秒前
15秒前
16秒前
云雨发布了新的文献求助10
18秒前
19秒前
19秒前
英姑应助凝雁采纳,获得10
21秒前
刘标发布了新的文献求助10
22秒前
南国之霄发布了新的文献求助10
22秒前
22秒前
研友_LX7478完成签到,获得积分10
23秒前
24秒前
24秒前
LY完成签到,获得积分10
24秒前
25秒前
在水一方应助舒服的凡之采纳,获得10
25秒前
LX发布了新的文献求助30
25秒前
26秒前
豆豆完成签到 ,获得积分10
27秒前
JW发布了新的文献求助10
28秒前
29秒前
搜集达人应助小乔采纳,获得10
30秒前
sky完成签到 ,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4551046
求助须知:如何正确求助?哪些是违规求助? 3980841
关于积分的说明 12324745
捐赠科研通 3650056
什么是DOI,文献DOI怎么找? 2010265
邀请新用户注册赠送积分活动 1045556
科研通“疑难数据库(出版商)”最低求助积分说明 933998