A comprehensive map of molecular drug targets

药品 药物发现 计算生物学 毒品类别 药物开发 机制(生物学) 人类疾病 疾病 生物 人类基因组 药物靶点 药理学 医学 基因组 生物信息学 遗传学 基因 病理 哲学 认识论
作者
Rita Santos,Oleg Ursu,Anna Gaulton,A. Patrícia Bento,Ramesh S. Donadi,Cristian Bologa,Anneli Karlsson,Bissan Al‐Lazikani,Anne Hersey,Tudor I. Oprea,John P. Overington
出处
期刊:Nature Reviews Drug Discovery [Nature Portfolio]
卷期号:16 (1): 19-34 被引量:2047
标识
DOI:10.1038/nrd.2016.230
摘要

The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development. Here, we present an updated comprehensive map of molecular targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets indicates the continued dominance of privileged target families across disease areas, but also the growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships between bioactivity class and clinical success, as well as the presence of orthologues between human and animal models and between pathogen and human genomes. Through the collaboration of three independent teams, we highlight some of the ongoing challenges in accurately defining the targets of molecular therapeutics and present conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿安完成签到,获得积分20
3秒前
4秒前
5秒前
toda_erica完成签到 ,获得积分10
6秒前
开心的万天完成签到,获得积分10
6秒前
皎月诗心完成签到 ,获得积分10
6秒前
Ava应助hr采纳,获得10
7秒前
7秒前
8秒前
9秒前
独特的舞仙完成签到,获得积分20
10秒前
小二郎应助Zjf采纳,获得10
10秒前
10秒前
12秒前
小萝莉完成签到,获得积分10
12秒前
12秒前
吴DrYDYY完成签到 ,获得积分10
13秒前
zjhzjh发布了新的文献求助10
13秒前
iceice发布了新的文献求助10
14秒前
15秒前
情怀应助肚子幽伤采纳,获得10
16秒前
我叫叶尼玛应助怡然白曼采纳,获得10
16秒前
orixero应助舒适路人采纳,获得10
17秒前
esther816发布了新的文献求助10
17秒前
摆烂王子发布了新的文献求助10
19秒前
小詹发布了新的文献求助10
22秒前
摆烂王子完成签到,获得积分10
24秒前
Orange应助iceice采纳,获得10
25秒前
冷酷的风华完成签到,获得积分10
25秒前
aa31完成签到,获得积分10
26秒前
29秒前
29秒前
一定会更好的完成签到,获得积分10
32秒前
绝尘发布了新的文献求助10
33秒前
97完成签到,获得积分20
33秒前
Hello应助舒适路人采纳,获得10
34秒前
zhao发布了新的文献求助10
34秒前
chloe完成签到,获得积分10
34秒前
35秒前
bkagyin应助荧荧荧采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784579
求助须知:如何正确求助?哪些是违规求助? 3329677
关于积分的说明 10243161
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671570
邀请新用户注册赠送积分活动 800431
科研通“疑难数据库(出版商)”最低求助积分说明 759391