Unobtrusive Mattress-Based Identification of Hypertension by Integrating Classification and Association Rule Mining

关联规则学习 鉴定(生物学) 联想(心理学) 集合(抽象数据类型) 召回 计算机科学 领域(数学分析) 数据挖掘 班级(哲学) 人工智能 维数(图论) 利用 精确性和召回率 医学 机器学习 数学 心理学 认知心理学 计算机安全 生物 数学分析 植物 程序设计语言 纯数学 心理治疗师
作者
Fan Liu,Xingshe Zhou,Zhu Wang,Jinli Cao,Hua Wang,Yanchun Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (7): 1489-1489 被引量:25
标识
DOI:10.3390/s19071489
摘要

Hypertension is one of the most common cardiovascular diseases, which will cause severe complications if not treated in a timely way. Early and accurate identification of hypertension is essential to prevent the condition from deteriorating further. As a kind of complex physiological state, hypertension is hard to characterize accurately. However, most existing hypertension identification methods usually extract features only from limited aspects such as the time-frequency domain or non-linear domain. It is difficult for them to characterize hypertension patterns comprehensively, which results in limited identification performance. Furthermore, existing methods can only determine whether the subjects suffer from hypertension, but they cannot give additional useful information about the patients’ condition. For example, their classification results cannot explain why the subjects are hypertensive, which is not conducive to further analyzing the patient’s condition. To this end, this paper proposes a novel hypertension identification method by integrating classification and association rule mining. Its core idea is to exploit the association relationship among multi-dimension features to distinguish hypertensive patients from normotensive subjects. In particular, the proposed method can not only identify hypertension accurately, but also generate a set of class association rules (CARs). The CARs are proved to be able to reflect the subject’s physiological status. Experimental results based on a real dataset indicate that the proposed method outperforms two state-of-the-art methods and three common classifiers, and achieves 84.4%, 82.5% and 85.3% in terms of accuracy, precision and recall, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小徐采纳,获得10
1秒前
无心的行云完成签到,获得积分10
6秒前
9秒前
12秒前
cyy完成签到 ,获得积分10
12秒前
田様应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
轻松笙发布了新的文献求助10
14秒前
动漫大师发布了新的文献求助10
16秒前
18秒前
crazywilliam发布了新的文献求助10
21秒前
Misea发布了新的文献求助10
22秒前
科研通AI5应助s1ght采纳,获得10
23秒前
山水之乐发布了新的文献求助10
26秒前
顾矜应助crazywilliam采纳,获得10
32秒前
hakunamatata完成签到 ,获得积分10
34秒前
39秒前
风衣拖地完成签到 ,获得积分10
39秒前
39秒前
vicky完成签到,获得积分10
41秒前
41秒前
青山完成签到 ,获得积分10
42秒前
梦初发布了新的文献求助10
43秒前
淡定发布了新的文献求助10
44秒前
indigo发布了新的文献求助10
46秒前
小徐发布了新的文献求助10
48秒前
48秒前
49秒前
小鱼儿完成签到,获得积分10
49秒前
余味应助zhouleiwang采纳,获得10
51秒前
1111完成签到 ,获得积分10
51秒前
方小晓完成签到,获得积分10
52秒前
s1ght发布了新的文献求助10
52秒前
54秒前
聪慧芷巧发布了新的文献求助10
56秒前
qizhia完成签到 ,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779725
求助须知:如何正确求助?哪些是违规求助? 3325161
关于积分的说明 10221707
捐赠科研通 3040293
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535