亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning for Multiobjective Optimization

数学优化 计算机科学 强化学习 人工神经网络 水准点(测量) 帕累托原理 人工智能 一般化 数学 数学分析 大地测量学 地理
作者
Kaiwen Li,Tao Zhang,Rui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3103-3114 被引量:268
标识
DOI:10.1109/tcyb.2020.2977661
摘要

This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游漂漂应助Karol采纳,获得10
4秒前
可爱花瓣完成签到,获得积分10
6秒前
8秒前
11秒前
15秒前
18秒前
21秒前
酷酷的大米完成签到,获得积分10
22秒前
Lebpom发布了新的文献求助10
23秒前
30秒前
馒头发布了新的文献求助10
34秒前
36秒前
40秒前
43秒前
所所应助Lebpom采纳,获得30
45秒前
快乐芷荷完成签到 ,获得积分10
47秒前
CipherSage应助动听的又亦采纳,获得10
55秒前
英俊的铭应助LucyMartinez采纳,获得10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
馒头完成签到,获得积分20
1分钟前
潇洒莞完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助能力越小责任越小采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
默默善愁发布了新的文献求助10
1分钟前
Victory完成签到,获得积分10
1分钟前
yara完成签到 ,获得积分10
1分钟前
1分钟前
宇称yu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565