Deep Reinforcement Learning for Multiobjective Optimization

数学优化 计算机科学 强化学习 人工神经网络 水准点(测量) 帕累托原理 人工智能 一般化 数学 大地测量学 数学分析 地理
作者
Kaiwen Li,Tao Zhang,Rui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3103-3114 被引量:235
标识
DOI:10.1109/tcyb.2020.2977661
摘要

This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得30
1秒前
Micro_A应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Micro_A应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
冰魂应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
SSS水鱼发布了新的文献求助10
3秒前
Keming完成签到,获得积分10
4秒前
KK完成签到,获得积分10
4秒前
跳跳糖发布了新的文献求助10
4秒前
辛勤迎彤完成签到,获得积分10
5秒前
懒羊羊大王完成签到 ,获得积分10
6秒前
6秒前
平常的毛豆应助Drjason采纳,获得10
8秒前
hades完成签到 ,获得积分10
9秒前
叽里咕卢完成签到 ,获得积分10
9秒前
辛勤迎彤发布了新的文献求助10
10秒前
10秒前
12秒前
所所应助Summeryz920采纳,获得10
12秒前
科研小虫完成签到,获得积分10
14秒前
田様应助微醺小王采纳,获得10
15秒前
Summeryz920发布了新的文献求助10
16秒前
典雅问寒应助辛勤迎彤采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959